
Vic20emu User Manual

Vic20emu User Manual
Table of Contents
Introduction..2
Running the Emulator...2
Getting Started..3

Vic Output (screen)..3
Vic Keyboard...4
Vic Joystick..4
Console..5

Running a Program...6
The Debugger Window...7
The IEC Window (Debug IEC)..9
Startup Scripts..10
Symbols..12
Profiling..13
I/O inspection...16
Viewing and editing memory contents...17
Vic 1541 Emulation & Future work...18

Arndt Mühlenfeld 1 / 18 2013-09-04

Vic20emu User Manual

Introduction
The Vic-20 Emulator & Debugger focuses on features that help explore the Vic-20 hardware or at
least it helped me understanding the machine better than I did 20 years ago. The internal structure of
the Java program resembles the hardware structure, which is not best for performance, but has other
benefits with regard to program analysis and modularity.
If you just want to fire up an emulator and play a few old games there are certainly better and more
complete alternatives, e.g. Vice1 or MESS2. Also for writing small programs the "Vic20 CBM .prg
Studio"3 may provide you with all you need. Finally, you need a decent PC to run the emulator at
reasonable speed.
So why did I feel the urge to write another emulator, if there already are so many very good
programs available? Here is why:

– vic20emu is written in Java, so it supports a wide range of host platforms.
– it comes with a modern user-interface that is superior to original debuggers on the Vic-20

and supports analyzing different aspects of the system (e.g., charts for signals on the VIA
ports, advanced code profiling).

– the debugger that can be started from the development environment with symbols loaded
and ready to run the program, thereby conveniently completing the code-compile-debug
cycle.

This document gives a brief overview of the features of the emulator and starts with a quick
introduction, followed by descriptions of the modules you may want to use to explore the Vic-20 in
greater depth after getting acquainted with the basic functionality of the emulator.

Running the Emulator
When you start the emulator using the setup dialog (which is
default), a dialog box lets you choose a few configuration options.
Use the drop-down list to select the machine you want to emulate.
At present, there is only Vic-20 and an experimental version of the
Vic-1541. Vic-1541 emulation does emulate the CPU and the I/O
chips, so you can inspect the firmware of the drive for educational
purposes, but that is all for now (see Section "Vic 1541 Emulation
& Future work").

The options for the Vic-20 emulation are:
– IEC drive simulation (Printers & Floppies)
– FE3 RAM support (512K RAM in Super RAM mode)
– Port state logging (I/O inspection)

Use "IEC device simulation" if you want to load files from your PCs file-system. "FE3 RAM
support" is useful to develop or run programs for the Final Expansion 3, like a RAM disk or the
Task Switcher. "Port state logging" records the signals of the VIAs I/O (which makes emulation
slower) and is explained in Section "I/O inspection".

1 http://www.viceteam.org/
2 http://www.mess.org/
3 http://www.ajordison.co.uk/

Arndt Mühlenfeld 2 / 18 2013-09-04

Vic20emu User Manual

Getting Started
When you start the emulator for the first time, the basic windows of the emulator pop up on your
desktop and you have to arrange the windows to your needs. Window positions are saved, when you
close the application via Exit in the file menu (see Figure 1). After you finished moving around and
resizing the windows, select Run from the CPU menu and the emulator starts running.

The four main windows of the emulator are the console window and three peripherals windows for
screen, keyboard and joystick. Whenever you close one of the four main windows, the emulator
quits running.

Vic Output (screen)

The window displays screen output from the VIC once the CPU is running. The status bar at the
bottom of the window shows running state and frequency of the emulated CPU.

You can use your PC keyboard to type text, when the window is active and you can paste text from
other sources into the Vic-20 keyboard buffer, by clicking the right mouse button inside the window.

Arndt Mühlenfeld 3 / 18 2013-09-04

Figure 1: The main windows of the emulator. Close any of the four windows to close the
application. Use 'Exit' from the File menu in order to store window positions.

Vic20emu User Manual

The numerical keypad and right Ctrl key emulate the Joystick.

Vic Keyboard

The keyboard window is an imitation of the Vic-20 keyboard. You can use it for keys that are not
present on the PC keyboard.

Keys are locked by clicking them with the right mouse button and unlocked by right-clicking them
again. This is useful if you want to press multiple keys at the same time or want to freeze keyboard
state while hitting a breakpoint or single-stepping through your code.

Vic Joystick

The Joystick window has four small circles for the joystick positions in the
outer circle and a circle in the center of the window that shows the state of
the fire button.

Move the mouse cursor to the inner circle to "steer" the joystick by the
position of the mouse pointer. Click the right mouse button to "fire".

Arndt Mühlenfeld 4 / 18 2013-09-04

Vic20emu User Manual

Console

The console window contains menus to access commands, other windows, and the debugger shell
that shows CPU messages and a command interface (input field at the bottom). You do not have to
type in commands, because most (and more) functions are accessible from the menu or the
debugger window. But if you prefer typing instead of clicking you can get a list of the available
commands by typing "help". All commands can be used in startup scripts (see chapter "Startup
Scripts").

From the File menu you can load files into Vic-20 memory or store memory contents to files in
different formats.

The Edit menu is used for command interface input.

The CPU menu lets you start, stop and reset the CPU.

The Window menu is used to access other useful windows, like the memory configuration, a
memory viewer and editor, and the debugger window. The available entries depend on the settings
you used when starting the emulator, e.g., "IEC Log" is only available, when the "IEC device
simulation" is active.

Arndt Mühlenfeld 5 / 18 2013-09-04

Vic20emu User Manual

Running a Program
You can load programs directly to memory or use the disk
emulation for loading them in the emulator. In both cases you have
to select the memory configuration for the program to run. Open the
configuration window from the Window menu and set the memory
layout appropriately.

Initially, all external memory areas are switched off. If you set an
area to ROM, the Vic-20 cannot write to it, but you can still load
files to memory from the File menu. This is useful to prevent ROM
programs from accidentally or intentionally overwriting their code.

The Open command from the file menu lets you select a file from your filesystem and tries to guess
start address, size and format, if possible.

For example, the parameters of the file
"dragonwing.prg" are guessed correctly after
selecting it with the "Browse..." button. The
option "BASIC" is necessary for BASIC
programs that are loaded to an address that
differs from their original location.

After loading the program to memory you can switch to the Output window, type RUN and hit
"Enter" to start for example this great program written by Aleksi Eben. (Unfortunately, the emulator
does not play sound yet)

Arndt Mühlenfeld 6 / 18 2013-09-04

Figure 2: Dragon Wing running in the emulator.

Vic20emu User Manual

The Debugger Window
You can access the debugger window from the console window (Window menu).

Here you can

– Control execution

– Search for code locations (addresses and labels)

– Load, edit and save symbols

– Enable profiling and view profiling results

– Review and modify register values

– Browse through code

– Set and clear breakpoints

– Navigate to return addresses on the stack.

You can start and stop execution as well as single step through the program by using the buttons in
the toolbar. The arrow pointing down steps into subroutine calls and interrupts, whereas the straight
arrow stops execution after returning from a JSR. The up arrow stops after the next RTS/RTI.

Another way to control execution uses the context menu. Click the right
mouse button inside the code area and a menu pops up.

Using this menu you can continue execution until it reaches the selected
line, or set and clear breakpoints.

Breakpoints are marked by a red bullet to the left of a code line and can also
be set or cleared by a double click in that area. (The black triangle marks
the current position of the program counter.)

Arndt Mühlenfeld 7 / 18 2013-09-04

Vic20emu User Manual

Right next to the command buttons is the search box. You can enter a label or an address and hit
enter or the search button to navigate to the corresponding location in memory. (Hex numbers need
a '$' in front, as in "$FFD2"). If the debugger can not find the label or address the search box turns
orange until you type something else into the search box.

With the "Symbols"-Button, you can open the symbol window, where you can load and save
symbols to and from file (e.g. labels from ca65) (see Section "Symbols").

The checkbox labeled "profile" enables execution profiling.
When enabled, the debugger displays a blue bar in every
row in the code window. The width of the bar correlates
with how often the statement was executed. Move the
mouse pointer over the bar to get more results as a tool tip
or review the results in another window with a click on the
small bar graph in the toolbar (see Section "Profiling").

You also get a tool tip when you move the mouse pointer over the operand of a statement. For
example, the operand "curblk+3" of the statement STA has the tooltip "($14BB) -> $17.

$14BB is the value of curblk+3 and the target address of the store command STA. The current value
at address $14BB is $17. This is useful, if you step through code and want to know what is going on
in the next step without looking for the correct locations in the memory window.

The second toolbar shows register values, stack pointer, and CPU cycles elapsed since starting the
emulator. Red text color indicates that a value has changed since the last break. You can change
each of the register values and flags, but not the cycle count.

The stack list in the bottom of the debugger window shows the annotated stack contents. Entries
marked with [JSR] or [INT] are pushed by a JSR statement or Interrupt respectively. You can jump
to the corresponding location in the code window by double clicking the line in the stack list.

Arndt Mühlenfeld 8 / 18 2013-09-04

Vic20emu User Manual

The IEC Window (Debug IEC)
The IEC simulator emulates the communication protocol of
Commodore's serial bus. Every byte sent over this bus is logged in
the "Debug Log" of the IEC window. Commands bytes are
preceded by '/' and the command is shown in plain text.

The upper part of the window lists the configured devices on the
bus. You can add and remove devices and edit their properties by
clicking into the table.

At present, the emulator supports two devices: printer and disk.

Printer is either like a null device that "consumes" every byte and
discards it immediately or – if you specify a file name – writes
everything it receives to a file.You can get a listing of your BASIC
program by printing it to a file using the BASIC commands
"OPEN4,4:CMD4:LIST"

Disk is a file system driver that supports reading files (including
"$") from the local file system. You can also change the current
directory by using the "CD" command known from SD2IEC.

The option "Log State" enables logging of the state transitions of
the IEC protocol client simulation and is used to debug the IEC
simulation.

Note:

Do not set clock emulation to favor speed over accuracy, if you
use the IEC device simulation, because otherwise it will not
work correctly.

Arndt Mühlenfeld 9 / 18 2013-09-04

Vic20emu User Manual

Startup Scripts
You can use the commands of the debugger console to setup the emulator for the program you want
to run or debug. To get a list of available commands type 'help' into the command input line at the
bottom of the console window.

You get help for a specific command by typing 'help' followed by the command. To run a specific
configuration, write the commands into a file and start the emulator with the file name as parameter.

For example, take a look at the startup script I use to debug VIN4:

go til ready
wait
set ram 1
set ram 2
set ram 3
load code ../vin/diskmenu.prg
load symbols ../vin/diskmenu.lbl
sys prolog
go til prolog
wait
break set panic2

'go til' tells the emulator to run until it hits the given address or label. 'ready' is defined in the ROM
symbol table (vicrom.sym) as

c474 ready Restart BASIC

Since the console continues executing commands after 'go', we have to use the 'wait' command to
wait until the CPU stops running, before issuing the next commmand. Then, the Vic-20 has finished
its initialization and is ready for loading programs. Next, the script enables RAM in banks 1-3 ('set
ram') and loads the program ('load code') and its symbols from ca65 ('load symbols').
The programs symbol file defines the symbol 'prolog', which is the entry point of the program. The
command 'sys' writes the BASIC 'SYS' command to the keyboard buffer and with 'go til' and 'wait'
we let the CPU reach the label 'prolog'.

4 http://code.google.com/p/vin20/

Arndt Mühlenfeld 10 / 18 2013-09-04

Vic20emu User Manual

VIN has an error routine that quits the program and prints register values and stack values on a blue
screen. While debugging, I prefer to have the program stop at a breakpoint instead. The last line of
the script sets this breakpoint at a location in the error routine ('break set').

After starting the emulator with the script described above, the PC points exactly to the entry point
of my program and the debugger is ready to run.

Arndt Mühlenfeld 11 / 18 2013-09-04

Vic20emu User Manual

Symbols
Vic20emu supports using symbols as simple labels generated from ca65 or a combination of label,
remark and type specification. The emulator comes with a set of symbols for the Vic-20 ROM
derived from the "Commodore VIC-20 ROM Memory Map" found on funet/zimmers and the
format of this file is the second type of symbol files the emulator can read.

You can edit symbols in the debugger window and save them to a file for later use using the
"Symbols"-button in the debugger's tool-bar. By pressing the "Symbols" button you get a list of all
currently known symbols and their source. You can double-click on a symbol to navigate to the
respective location in the debugger window.

Arndt Mühlenfeld 12 / 18 2013-09-04

Vic20emu User Manual

Symbols are organized by their source. The symbols loaded on startup are marked as "System",
Symbols you edit in the debugger window as "User" and all other symbols by the file they were
loaded from. In order to save a set of symbols, you just have to select a file name and the source
group(s) to save.

Profiling
The vic20emu profiler monitors code execution when enabled and generates statistics for executed
statements during a profiling run. This results in execution statistics for single statements as
mentioned in the description of the debugger window, where you can see immediately how many
cycles each of your statements consumed. The debugger window also has a stop-watch for the CPU
clock, so you can exactly measure the elapsed cycles between breakpoints.

Since examining the code in the debugger window is certainly not the best way to determine the
part of your code that uses most of the execution time, you can open a window with comprehensive
results in the "Profiling" window.

The profiling window shows results gathered during profiling runs in three categories:

– Code statistics ("Code" tab)

– Function calls ("Calls" tab)

– Call tree ("Tree tab")

Code statistics show the results you already know from the debugger window in a table you can
sort by each column with the additional information of the ratio of time spent on the instruction
related to the total execution time.

Arndt Mühlenfeld 13 / 18 2013-09-04

Vic20emu User Manual

You get a structured view of the profiling results on tab Function calls, where execution statistics
are counted between function entry ("JSR") and function exit ("RTS").

The example above shows typical results for the initialization routine of the Vic-20 kernal ROM.
Most of the time was spent in routine "ramtas", which checks and tests RAM available for BASIC
programs. It was only executed once, so its "Hit count" is 1 and "Avg. Cycles" equals "Cycles".
If you look at the "cycles" column, you will see that more time was spent in "membot" than in
"ramtas". What you do not see in this table is that "membot" is called by "ramtas", but you could
guess it from the cumulative call result in column "Total cycles".
"Cycles" represents the CPU cycles spent in a sub-routine without the time spent in calls to other
sub-routines. "Total cycles" includes the CPU cycles spent in calls to other sub-routines.
So, since "ramtas" calls "membot+15" and no other sub-routine, the results sum up nicely (318464
+ 165312 = 483776). From the third tab ("Tree") you will see, that "ramtas" indeed calls
"membot+15".

Arndt Mühlenfeld 14 / 18 2013-09-04

Vic20emu User Manual

The Call tree arranges profiling results by the observed call sequence. Calls are jumps to sub-
routines (JSR) or interrupts and the target address of a call is repesented by a sub-node of the caller
in the tree.

The profiler generates the call tree only from code that is executed while profiling is active. Results
are best, if you start profiling from the outermost code, where all calls are made from. In the
example above, profiling was enabled before the CPU started execution for the first time. Hence,
the top-level node refers to address 0, which is the initial value of the program counter in the
emulator.
The call tree may be inaccurate, if the return address of a sub-routine is removed from the stack
without returning to the caller, or if the observed program puts a return address onto the stack by
other means than through JSR.
Nevertheless, the call tree is a useful tool, to analyze the structure of a program, especially if you
want to get a quick overview of code you do not know yet. You can always double-click on a node
of the tree to navigate to its address in the debugger window.

Note: Statistics are only updated, when the profiling window initialises. If you continue profiling
while the profiling window is open, it will not refresh. In order to get actual results, close the
window and open it again from the debugger window.

Arndt Mühlenfeld 15 / 18 2013-09-04

Vic20emu User Manual

I/O inspection
The two VIAs handle peripheral input and output of the
VIC-20, i.e., the keyboard, a joystick and the IEC serial
bus, which connects the VIC-20 to printers and disc
drives. Vic20emu lets you examine the state of the VIAs
with respect to I/O, timers and interrupts.

The dialog updates its contents only when the CPU is
stopped, so you can not see the timers counting down
while the program is running. So this dialog presents a
snapshot of the VIAs state.

You can not modify the values in this dialog directly, but
you can write to the VIA's registers by using the button
"Register values...".

The Via 6522 has two 8-bit ports (A and B) for digital
input and output. Each of the 8 port lines can be used for
input or ouput. If a port line is in input mode, the state
LED in the "In" row is active. If a port line is in output
mode its LED in the "Out" row is active (bright red or
green).

A green LED indicates that the port bit is in logical high
state ('1'). The red LED corresponds to logical low ("0").

In addition the the 8 port lines each port has two
handshake lines (Cx1 and Cx2). Their operating mode is
controlled by the port control register (PCR) and the
current setting is shown in the small icon right to the
LED. Move your mouse cursor over the icon to get a tool-
tip with a description of the current mode.

The dialog helps you to debug programs that write to or
read from the ports, by showing you the states of the ports
at a certain point in you program. For debugging protocols like the serial protocol used for the disk
drives and printers, this is only useful, if you almost know, where your program fails, so that you
can single step through the suspicious code, while observing the states of the port lines. Sometimes
the bug only shows up under certain circumstances, perhaps after transmitting hundreds of bytes
and when you notice it, you would have to rewind executing for a lot of cycles to locate its cause.

Vic20emu can do this for you by logging the states of the port
lines over a defined number of signal changes. Port state logging
slows down execution of the emulation significantly, so you have
to enable it in the setup dialog that shows up, when you start the
emulator without command line options.

If you enable port state logging, signal graphs are attached to the
VIA dialogs and the IEC Simulation dialog ("Debug IEC").

Arndt Mühlenfeld 16 / 18 2013-09-04

Vic20emu User Manual

Each of the I/O lines PA0 to PA7 and PB0 to PB7 have to signal graphs. One for its output value
and one for its input. For example the input graph for PA0 is labelled PA0i and shown in grey,
whereas the output signal is labelled PA0o and drawn in black.

Of course, each port bit is alway either in input or output mode, but its mode can change during
execution and by showing the signals with different graphs you can see at a glance which mode the
port was in.

Use the combobox heading the dialog page to select the signal range to display and scroll back and
forth in time with the arrow indicators on both sides of the combobox. The time scale is marked in
clock ticks elapsed since the start of the emulator, the same value you find in the register panel of
the debugger.

Viewing and editing memory contents
Vic20emu has a powerful hex editor for viewing, and manipulating memory data. It shows all RAM
that is theoretically available to the CPU, but does not show register values. In FE3 mode the
additional 512K RAM is segmented into 16 banks of 32K RAM each, because that is how the
memory is organised in Super RAM mode.

Besides viewing and editing memory content directly as byte values or text, you can select memory
areas with the mouse (move the mouse while holding the left button) and use the context menu

Arndt Mühlenfeld 17 / 18 2013-09-04

Vic20emu User Manual

(right mouse click) to copy, paste, fill, save, or load selected memory regions.

The search box in the top of the dialog lets you search for text or numbers. Move your mouse over
the input field to get a description of how to format your seach string.

Vic 1541 Emulation & Future work
For now, the Vic-1541 emulator consists of a CPU, memory and the two VIAs. It lets you debug the
drive's code up the the point, where feedback from the I/O ports is needed. For a fully usable
implementation, the emulator should also implement the drives hardware to a certain extend. I
intend to extend the emulation with respect to the drives hardware and then hook the Vic-1541
emulation up to the Vic-20 emulation thereby replacing the IEC Simulation.

That would form a system that is perfectly suited to examine software that is loaded into the Vic-
1541's RAM, like fast loaders, because you could debug both systems at the same time.

Before doing that, I need to improve the execution speed of the emulator, which is not overly
difficult, but takes some time. At present speed, emulating two systems at the same time is just not
feasible, particularly because I/O needs high accuracy and therefore minimum speed in the present
configuration.

Arndt Mühlenfeld 18 / 18 2013-09-04

	Introduction
	Running the Emulator
	Getting Started
	Vic Output (screen)
	Vic Keyboard
	Vic Joystick
	Console

	Running a Program
	The Debugger Window
	The IEC Window (Debug IEC)
	Startup Scripts
	Symbols
	Profiling
	I/O inspection
	Viewing and editing memory contents
	Vic 1541 Emulation & Future work

