Vic20emu User Manual

Vic20emu User Manual
Table of Contents

INEEOAUCTION. ...ttt ettt et e e bt et e st et e eaeesae e bt enbeesnbeesnbeeenbeeenneeens 2
RUnning the EMUIALOT.cc.oiiiiiiie et ettt ettt ettt et e saeeeas 2
GELEING STATLEA. ... eeevieiiiiiiieie ettt ettt ettt et e et e e teeeabeestaeesbeeseessseensaessseesseessseenseessseenseesnssaeenns 3

VIC OULPUL (SCTEEI).c.ieutieiieeiie et ette ettt et e eite et e st e bt e sateesbeeeateeseesateenseessbeeseesaseenseesnseenseeeanneeenans 3

VIC KEYDOAIA.oiiiiiieiiicieeee ettt ettt e et et e et e ebeeesseesaeesbaessaeesseeensaeaesseeaans 4

VIC JOYSEICK. ¢ttt ettt sttt ettt be et st sb et et sae et e et es 4

COMSOLE. ...ttt et ae e e bt e a ettt e s at e e ab e eab e e bt e sab et e e bbb e e et e e eatee 5
RUNNING @ PrOZIAML...cc.iiiiiiiiiieiiee ettt ettt et e et e et e st e e bt e s st e e bt e sateenbeasnsaeeenns 6
The Debug@er WINAOW..........ccoiiiiieiieeieeieeeite et ertee ettt e e teesteesaeeteeesseeseessseesseessseesseessseeseessseenseenns 7
The IEC WIndow (Debug IEC).......cooiiiiiiiieeee ettt ettt e et ee e eaeeeeens 9
STATEUP SCTIPLS. ceuetieeiiieeitiee ettt ettt et e et ee ettt e ettt e estteeebteesabeeessseeeasseeesseesnssaesannsssneaesennssneessennnns 10
SYIMDOIS. ..ttt st b et b bbb e e bt e e naeeen 12
PrOTIIINE ...ttt et e ettt e et e e et e e st e e st e e eat e e e nbeeentaeetaeeeeennnnaes 13
/O INSPECLION. ...ttt ettt et ettt s bt et e bt e bt et e sbt e s bt e bt e nbteenbaeenaneesaneen 16
Viewing and editing MEMOTY CONTENLS.cccuuiieruiieriirieeireeriieesteeesteeesreeesteeessseessreessseeessnssseeessannns 17
Vic 1541 Emulation & FUture WOrK..........coouiiiiiiiiiiieieee et 18

Arndt Miihlenfeld 1/18 2013-09-04

Vic20emu User Manual

Introduction

The Vic-20 Emulator & Debugger focuses on features that help explore the Vic-20 hardware or at
least it helped me understanding the machine better than I did 20 years ago. The internal structure of
the Java program resembles the hardware structure, which is not best for performance, but has other
benefits with regard to program analysis and modularity.

If you just want to fire up an emulator and play a few old games there are certainly better and more
complete alternatives, e.g. Vice' or MESS?. Also for writing small programs the "Vic20 CBM .prg
Studio"* may provide you with all you need. Finally, you need a decent PC to run the emulator at
reasonable speed.

So why did I feel the urge to write another emulator, if there already are so many very good
programs available? Here is why:

— vic20emu is written in Java, so it supports a wide range of host platforms.

— it comes with a modern user-interface that is superior to original debuggers on the Vic-20
and supports analyzing different aspects of the system (e.g., charts for signals on the VIA
ports, advanced code profiling).

— the debugger that can be started from the development environment with symbols loaded
and ready to run the program, thereby conveniently completing the code-compile-debug
cycle.

This document gives a brief overview of the features of the emulator and starts with a quick
introduction, followed by descriptions of the modules you may want to use to explore the Vic-20 in
greater depth after getting acquainted with the basic functionality of the emulator.

Running the Emulator
When you start the emulator using the setup dialog (which is

|£| Setup Emulator [é]

default), a dialog box lets you choose a few configuration options. | |22 (i
Use the drop-down list to select the machine you want to emulate. [IEC device simulation
At present, there is only Vic-20 and an experimental version of the 7] FE3 RAM support

Vic-1541. Vic-1541 emulation does emulate the CPU and the 1/0O
chips, so you can inspect the firmware of the drive for educational
purposes, but that is all for now (see Section "Vic 1541 Emulation | ok
& Future work").

[Log port state {slow])

|| Cancel |

The options for the Vic-20 emulation are:
— IEC drive simulation (Printers & Floppies)
— FE3 RAM support (512K RAM in Super RAM mode)
— Port state logging (I/O inspection)

Use "IEC device simulation" if you want to load files from your PCs file-system. "FE3 RAM
support" is useful to develop or run programs for the Final Expansion 3, like a RAM disk or the
Task Switcher. "Port state logging" records the signals of the VIAs I/O (which makes emulation
slower) and is explained in Section "I/O inspection".

1 http://www.viceteam.org/
2 http://www.mess.org/
3 http://www.ajordison.co.uk/

Arndt Miihlenfeld 2/18 2013-09-04

Vic20emu User Manual

Getting Started

When you start the emulator for the first time, the basic windows of the emulator pop up on your
desktop and you have to arrange the windows to your needs. Window positions are saved, when you
close the application via Exit in the file menu (see Figure 1). After you finished moving around and
resizing the windows, select Run from the CPU menu and the emulator starts running.

sssss

r = i [Tl)
50N P 6 0 Y =Y A
ES0 0 1 6 O S |

2] Vic Keyboard

Figure 1: The main windows of the emulator. Close any of the four windows to close the
application. Use 'Exit' from the File menu in order to store window positions.

The four main windows of the emulator are the console window and three peripherals windows for
screen, keyboard and joystick. Whenever you close one of the four main windows, the emulator
quits running.

Vic Output (screen)

The window displays screen output from the VIC once the CPU is running. The status bar at the
bottom of the window shows running state and frequency of the emulated CPU.

L] vic Output W

sk CEM EARA=I1IC W2 EIEJESE
==== EYTE= FREEE
READY . I

Running Clock: 759.043 kHz

You can use your PC keyboard to type text, when the window is active and you can paste text from
other sources into the Vic-20 keyboard buffer, by clicking the right mouse button inside the window.

Arndt Miihlenfeld 3/18 2013-09-04

Vic20emu User Manual

The numerical keypad and right Ctrl key emulate the Joystick.

Vic Keyboard

The keyboard window is an imitation of the Vic-20 keyboard. You can use it for keys that are not

present on the PC keyboard.

i --_1)
5 % & {] 0 = £ CLR INST i
1 2 3 4 5 B . k- 8 HOME DEL
CTRL Q w E R T k u I o P @ RESTORE F3
RUN SHIET []
sTOP LOCK A 5 D F G H J K L E : RETURN F5
-
- 7
c= SHIFT z x c v B N m 5 i SHIFT CRSR <CRSR> FT
: v
SPACE

Keys are locked by clicking them with the right mouse button and unlocked by right-clicking them
again. This is useful if you want to press multiple keys at the same time or want to freeze keyboard

state while hitting a breakpoint or single-stepping through your code.

Vic Joystick

The Joystick window has four small circles for the joystick positions in the
outer circle and a circle in the center of the window that shows the state of
the fire button.

Move the mouse cursor to the inner circle to "steer" the joystick by the
position of the mouse pointer. Click the right mouse button to "fire".

Arndt Miihlenfeld 4/18

2013-09-04

Vic20emu User Manual

Console

The console window contains menus to access commands, other windows, and the debugger shell
that shows CPU messages and a command interface (input field at the bottom). You do not have to
type in commands, because most (and more) functions are accessible from the menu or the
debugger window. But if you prefer typing instead of clicking you can get a list of the available
commands by typing "help". All commands can be used in startup scripts (see chapter "Startup

Scripts").
|£ | Console { — = &J

File Edit CPU Window Help
Debug Shell

BC RACX Y Flags SE Stack

£

From the File menu you can load files into Vic-20 memory or store memory contents to files in
different formats.

The Edit menu is used for command interface input.
The CPU menu lets you start, stop and reset the CPU.

The Window menu is used to access other useful windows, like the memory configuration, a
memory viewer and editor, and the debugger window. The available entries depend on the settings
you used when starting the emulator, e.g., "IEC Log" is only available, when the "IEC device
simulation" is active.

[Conar W N s |
File Edit CPU [Window | Help

Debug Shell ' v

Mernory
EC AC X Y [ck

Configuration

£

L

Debug
IEC Log
Vial
VA 2

St oo

Arndt Miihlenfeld 5/18 2013-09-04

Vic20emu User Manual

Running a Program

You can load programs directly to memory

or use the disk

emulation for loading them in the emulator. In both cases you have
to select the memory configuration for the program to run. Open the
configuration window from the Window menu and set the memory

layout appropriately.

Initially, all external memory areas are switched off. If you set an

area to ROM, the Vic-20 cannot write to it, but

you can still load

files to memory from the File menu. This is useful to prevent ROM
programs from accidentally or intentionally overwriting their code.

[£] Configur...l == X

Memory configuration

Empty
3k: 0400-OFFF

8k: 2000-3FFF
8K: 4000-5FFF
8K: 6000-TFFF
8k: ADDO-BFFF

 w e @ e

ROM RAM

OO0 000
OO0 0O0Co0

The Open command from the file menu lets you select a file from your filesystem and tries to guess

start address, size and format, if possible.

For example, the parameters of the file
"dragonwing.prg" are guessed correctly after
selecting it with the "Browse..." button. The
option "BASIC" is necessary for BASIC
programs that are loaded to an address that
differs from their original location.

| £ Load

| |

cro

Memory File IGSDYTEST \dragonwing.prg

Start Address |4097 | BASIC
Block Size 3135
@ Address as header {.prg) Raw data
Phau Zeh saved session (s20) PC&4 format (.POD)
PCVIC system snapshot (.pov) SID file {.sid)

CCS64 cartridge image (.crt

1age .ot

Ok || Cancel |

4

-

After loading the program to memory you can switch to the Output window, type RUN and hit
"Enter" to start for example this great program written by Aleksi Eben. (Unfortunately, the emulator

does not play sound yet)

g -l

|/ Vic Output . -e B " a | ([E] S

mamos oo L o o o Lo oo o o oo o o o
o R o o o o o o o oo o oo
. * . .
=gmn aelincglle. - wu

L o

="

Clock: 809.374 kHz

BESS_ LN NS = W
L i — -

Figure 2: Dragon Wing running in the emulator.

Arndt Miihlenfeld 6/18

2013-09-04

Vic20emu User Manual

The Debugger Window

You can access the debugger window from the console window (Window menu).

.
= E) [
O ‘ ‘,J & | Wi | [profile
AC X Y Flags 5P Cycle
| |soo [[[soa | [- = | |57 | [7a5571731 |
TYA |~
CLI
CLC
RT3
42 E7 L_ESES: ISR L_E742 ; Input From Eeyboard
6 L_ESES: LDA §00CE
cC STA $00CC -
92 02 STA §0292 =
F7 BEQ L_ESES
SET |
[§F4] 0D |~
[$F5] O& =
[$F6] ELl1 [T5R] #=$EL0F behin W
[§F8] C564 [JSR] *=40562 inlintz =
L

Here you can
— Control execution
— Search for code locations (addresses and labels)
— Load, edit and save symbols
— Enable profiling and view profiling results
— Review and modify register values
— Browse through code
— Set and clear breakpoints

— Navigate to return addresses on the stack.

1 | = 2

You can start and stop execution as well as single step through the program by using the buttons in
the toolbar. The arrow pointing down steps into subroutine calls and interrupts, whereas the straight
arrow stops execution after returning from a JSR. The up arrow stops after the next RTS/RTI.

Another way to control execution uses the context menu. Click the right
mouse button inside the code area and a menu pops up.

Using this menu you can continue execution until it reaches the selected
line, or set and clear breakpoints.

Breakpoints are marked by a red bullet to the left of a code line and can also
be set or cleared by a double click in that area. (The black triangle marks
the current position of the program counter.)

@ 153F 4AC D5 14 JMP @nxthlk
--|1542 20 17 12 prolog: J3F read config

1CAc A T3 12 TET JRRPIE [A

Arndt Miihlenfeld 7/18

Run to cursor
Scroll to PC

Set breakpoint
Clear breakpoint

Unassemble

Edit symbuol...

2013-09-04

Vic20emu User Manual

| »

Right next to the command buttons is the search box. You can enter a label or an address and hit
enter or the search button to navigate to the corresponding location in memory. (Hex numbers need
a'$' in front, as in "$FFD2"). If the debugger can not find the label or address the search box turns
orange until you type something else into the search box.

Sy

With the "Symbols"-Button, you can open the symbol window, where you can load and save
symbols to and from file (e.g. labels from ca65) (see Section "Symbols").

Il | [T profite Bl 521 oo
" | . . | 1523 EE EB 14
The checkbox labeled "profile" enables execution profiling. Bl 1z Esom Brnoovll:
When enabled, the debugger displays a blue bar in every Bl ises Do ooz
. . . 1524 FE6 DC
row in the code window. The width of the bar correlates I.Eountﬁmg Cycles: 13303 Avg, Cydes: 2
with how often the statement was executed. Move the Bl isE csoE
mouse pointer over the bar to get more results as a tool tip Ml 1550 ponc
. | 1532 AS DB
or review the results in another window with a click on the | 1s3a cs o

small bar graph in the toolbar (see Section "Profiling").

You also get a tool tip when you move the mouse pointer over the operand of a statement. For
example, the operand "curblk+3" of the statement STA has the tooltip "($14BB) -> $17.

8D EE 14 STh curblk+3
A0 00 LDY #500
B9 55 Frxthyt: LDE #555/(514BB) = 517

$14BB is the value of curblk+3 and the target address of the store command STA. The current value
at address $14BB is $17. This is useful, if you step through code and want to know what is going on
in the next step without looking for the correct locations in the memory window.

i PC AC X Y Flags 5P Cycle
iilsisar | 517 | s03 || - | [s75 | [sg7811 |

Ik
L |

The second toolbar shows register values, stack pointer, and CPU cycles elapsed since starting the
emulator. Red text color indicates that a value has changed since the last break. You can change
each of the register values and flags, but not the cycle count.

[$E7] 40 "o o |
[4E5] EEE3 [INT] #=4EEE3 $EEE3

[$EA] EEC4 [JSE] *=§EEC2Z second+z

[4ECT F6EB [J3R] #=4FEES $FEED

[$EE] F3BO0 [JSE] +=5F3AE cloze+l00 =

The stack list in the bottom of the debugger window shows the annotated stack contents. Entries
marked with [JSR] or [INT] are pushed by a JSR statement or Interrupt respectively. You can jump
to the corresponding location in the code window by double clicking the line in the stack list.

Arndt Miihlenfeld 8/18 2013-09-04

Vic20emu User Manual

The IEC Window (Debug IEC)

The IEC simulator emulates the communication protocol of
Commodore's serial bus. Every byte sent over this bus is logged in
the "Debug Log" of the IEC window. Commands bytes are
preceded by /' and the command is shown in plain text.

The upper part of the window lists the configured devices on the
bus. You can add and remove devices and edit their properties by
clicking into the table.

At present, the emulator supports two devices: printer and disk.

Printer 1s either like a null device that "consumes" every byte and
discards it immediately or — if you specify a file name — writes
everything it receives to a file.You can get a listing of your BASIC
program by printing it to a file using the BASIC commands
"OPEN4,4:CMD4:LIST"

Disk is a file system driver that supports reading files (including
"$") from the local file system. You can also change the current
directory by using the "CD" command known from SD2IEC.

The option "Log State" enables logging of the state transitions of
the IEC protocol client simulation and is used to debug the IEC
simulation.

Note:

Do not set clock emulation to favor speed over accuracy, if you
use the IEC device simulation, because otherwise it will not
work correctly.

Arndt Miihlenfeld 9/18

= Debug 1EC =l S
Devices
En| # Type File
Cd 4|printer (null}
v 8ldisk

‘ Add || Remove
AN
Debug Log

-=/28 - LISTEN #3
-=/F0 - OPEN #0
-= 56 -

-= 49-7T

-= 4E -

-= 2E-"

= 43-C

-= 46-F

= 47 -G

-=[3F - UNLISTEM
-= /48 - TALK #8

-= /60 - OPEN CHNIDATA #0
-=/28 - LISTEN #3
-=/E0-CLOSE#0
-=[3F - UNLISTEM
-=/28 - LISTEN #3
-=[EF - CLOSE#15

[] Log state Clear log

2013-09-04

Vic20emu User Manual

Startup Scripts

You can use the commands of the debugger console to setup the emulator for the program you want
to run or debug. To get a list of available commands type 'help' into the command input line at the
bottom of the console window.

|2 | Cansole =k |
File Edit CPU Window Help
Debug Shell
BC AC X Flags SP Stack |~
help
Available commands
irg atch set 3y3
break reget load halt
To get help for a specific command use
elp <command> |—-
help

You get help for a specific command by typing 'help' followed by the command. To run a specific
configuration, write the commands into a file and start the emulator with the file name as parameter.

For example, take a look at the startup script I use to debug VIN*:

go til ready
wait

set ram 1
set ram 2
set ram 3

load code ../vin/diskmenu.prg
load symbols ../vin/diskmenu.lbl
sys prolog

go til prolog

wait

break set panic2

'go til' tells the emulator to run until it hits the given address or label. 'ready’ is defined in the ROM
symbol table (vicrom.sym) as

cd74 ready Restart BASIC

Since the console continues executing commands after 'go’, we have to use the 'wait' command to
wait until the CPU stops running, before issuing the next commmand. Then, the Vic-20 has finished
its initialization and is ready for loading programs. Next, the script enables RAM in banks 1-3 ('set
ram') and loads the program ('load code') and its symbols from ca65 ('load symbols').

The programs symbol file defines the symbol 'prolog', which is the entry point of the program. The
command 'sys' writes the BASIC 'SYS' command to the keyboard buffer and with 'go til' and 'wait'
we let the CPU reach the label 'prolog'.

4 http://code.google.com/p/vin20/

Arndt Miihlenfeld 10/18 2013-09-04

Vic20emu User Manual

VIN has an error routine that quits the program and prints register values and stack values on a blue
screen. While debugging, I prefer to have the program stop at a breakpoint instead. The last line of
the script sets this breakpoint at a location in the error routine (‘break set').

After starting the emulator with the script described above, the PC points exactly to the entry point
of my program and the debugger is ready to run.

(2] Vic Output < T £ Console
File Edit CPU Window Help
Debug Shell
Running C:\Users‘\Arndt\workspace\vin\vin.debug...
CEU: break at $cd74
CPU: break at $1542
Done.
@@@@@@@@ BC AC X ¥ Flags S5F 3Stack
1542 00 00 00 = F7: 43 E1 E9 C7 79 Cé
20 17 12 J5R $1217
L
| Clock: 727
e T
> —
| Debug e ———
LI 2| lsa) [Do
AC X Y Flags sp Cycle
| [s00 [s00 [[s00 R - | Jse7 | [634637 |
1536 DO D& BNE [Brxthyt =]
I 1538 A% B8 Bendmen: LDA #5B8 B
1534 AZ 14 LD #514
153C &0 F1 13 J5F. maddram
I L53F 4C D5 14 JHP firthlk
D‘-|J.542 il il prolog: J3E read config
1545 20 E3 13 J5R cploader
| 1543 20 BC 14 TSR initmen
1548 20 9E 27 J5R initfntd
154E 20 89 12 J3R scandrives |
[¢F3] 43 |-
[§F9] El L
[§F4] C7ED [I5R] *=§CTET gone+a L
|rsFcy cevs [T3R] *=4CETT clear+25]
&' — il —_ A
Arndt Miihlenfeld 11718 2013-09-04

Vic20emu User Manual

Symbols

Vic20emu supports using symbols as simple labels generated from ca65 or a combination of label,
remark and type specification. The emulator comes with a set of symbols for the Vic-20 ROM
derived from the "Commodore VIC-20 ROM Memory Map" found on funet/zimmers and the
format of this file is the second type of symbol files the emulator can read.

You can edit symbols in the debugger window and save them to a file for later use using the
"Symbols"-button in the debugger's tool-bar. By pressing the "Symbols" button you get a list of all
currently known symbols and their source. You can double-click on a symbol to navigate to the
respective location in the debugger window.

- —

| £ Symbaols n—— l‘:' = g
=R

=
Addr... Label Remark: Type Source

S0000 |usr IMP to perform [usr] Code System "

20073 |chrget |Getnext char from BASIC text Code System il

20079 |chrgot |Get current char from BASIC text Code [System =

59000 |VIC Video Interface Chip 6581 Chip System

29110 [VIA1 Versatile Interface Adapter 6522 Chip System W

29120 |VIAZ Versatile Interface Adapter 6522 Chip System

SC000 Basic Restart Vectors Ward System

SC004 ‘chmbasic’ Data System

SC00C |stmdsp |BASIC Command Vectors Word [System

2C052 |fundsp |BASIC Function Vectors Word [System

SC080 |optab BASIC Operator Vectors Waord [System

SCO9E |reslst BASIC Command Keyword Table Data System

2C129 |mscst |BASIC Misc. Keyword Table Data System

SC140 |oplist BASIC Operator Keyword Table Data System

SC14D |funlst BASIC Function Keyword Table Data System

SC19E |errtab |Error Message Table Data System

SC328 |errpir Error Message Pointers Ward System

SC364 |okk Misc. Messages Data System

2389 Unused byte Data System

SC38A |fndfor |Find FOR/GOSUB Entry on Stack Code System

SC3B8 |bltu Open Space in Memory Code System

SC3FE |getstk |Check Stack Depth Code [System

SC408 reason |Chedc Memory Overlap Code System

SC435 |omerr Output 0OUT OF MEMORY Error Code System

SC437 |error Error Routine Code System

SC465 |errfin Break Entry Code System]

SC474 |ready Restart BASIC Code System

SC430 |main Input & Identify BASIC Line Code [System

2C49C mainl |GetLine Mumber & Tokenise Text Code [System

SC442 |inslin Insert BASIC Text Code System

22533 |inkprg |Rechain Lines Code [System

2C560 |inlin Input Line Into Buffer Code [System

SC579 |ounch [Tokenise Input Buffer Code System

eC613 |fndiin search for Line Number Code System

2C642 |scrich |Perform [mew] Code [System

SCASE ||:|ear Perform [dr] Code System

SCE8E |sb¢pt Reset TXTFTR Code System

sce9C st Perform [list] Code [System il
E__ﬂ_-u-._ | 1 Lol L o o

Arndt Miihlenfeld 12/18 2013-09-04

Vic20emu User Manual

Symbols are organized by their source. The symbols loaded on startup are marked as "System",
Symbols you edit in the debugger window as "User" and all other symbols by the file they were
loaded from. In order to save a set of symbols, you just have to select a file name and the source
group(s) to save.

Profiling

The vic20emu profiler monitors code execution when enabled and generates statistics for executed
statements during a profiling run. This results in execution statistics for single statements as
mentioned in the description of the debugger window, where you can see immediately how many
cycles each of your statements consumed. The debugger window also has a stop-watch for the CPU
clock, so you can exactly measure the elapsed cycles between breakpoints.

Since examining the code in the debugger window is certainly not the best way to determine the
part of your code that uses most of the execution time, you can open a window with comprehensive
results in the "Profiling" window.

The profiling window shows results gathered during profiling runs in three categories:
— Code statistics ("Code" tab)
— Function calls ("Calls" tab)
— Call tree ("Tree tab")

Code statistics show the results you already know from the debugger window in a table you can
sort by each column with the additional information of the ratio of time spent on the instruction
related to the total execution time.

|| Prafiling T T | (=) []
{ Code | Calls I Treel
Ratio (%) Cydes Hit count Avg. Cydes Address Label

25 918411 229593 4| SESEC SESEC -

19 5838912 229604 3|SESEF SESEF |

19 588852 229592 3|SESES SESEB

19 533847 229591 3|SESEA SESEA
1 43003 Tle3 &|SFDBS ramtas +30
1 <3003 T153 S| SFEAB membot+33
1 35540 T163 5|sFDAF ramtas +34%
1 3580 T153 S5(sFE91 membot+15
1 35840 Ti63 5|sFE9S membot+20
1 3580 F168 5(sFE93 membot+22
1 35840 Ti63 S5|SFEAG membot+36
a 21504 T168 3|SFDBE ramtas+4%3
2] 21475 T163 2,995 |SFDB1 ramtas+35
a 204980 4095 5|SFESD membot+27
[a] 20480 =11 5|sFE9F membot+29
o] 17408 Tle3 2,929 |SFDBA ramtas +45
[a] 17408 T153 2,929 |SFE9A membot+24
=] 14336 Ti63 2Z|SFE93 membot+17
[a] 14335 T153 2Z|SFE94 membot+18
=] 14336 Ti63 2Z|SFEAS membot+35
a 12287 4096 3|SFDBC ramtas+4%7
2] 9215 3072 3|SFDDE ramtas+81
a 8192 4095 2|SFESC membot4-26
2] 8192 095 2Z|SFEA1 membot+31
a 8192 4095 2|SFEAS membot+33
[a] 5194 3072 2Z|SFEA4 membot+34
o] S076 1012 5,016|SEAST SEAST
[a] S07S 1012 5,015 |SEASB SEASEB
=] 29390 1012 2,955|SEASE SEASE
a 2024 1012 2|SEASS5 SEASS
=] 2024 1012 2Z|SEAS9 SEASD
a 2024 1012 2|SEAD SEASD
2] 1024 256 4|§FD30 ramtas+3
a 1024 256 4|SFD92 ramtas+5
[a] 1024 256 4| SFD95 ramtas+3
o] 296 166 &|SEABF SEABF
[u] 296 155 SISEE12 SEE12 S

[Reset & Close]
b

Arndt Miihlenfeld 13/18 2013-09-04

Vic20emu User Manual

You get a structured view of the profiling results on tab Function calls, where execution statistics
are counted between function entry ("JSR") and function exit ("RTS").

|| Profiling T T [| =) []
| Code | Calls | Treel
Total cydes Cydes Hit count Avg. Cydes Address Label
483776 165312 1 165312 |sFDED ramtas -~
318454 3154954 7158 44| SFE91 membot+15 N
37570 19011 1665 114|SFF72 SFF72
34570 154 1 154 |SE404 initms
29529 1134 3 373|SCE1E strout
280569 e le] 50 14|(sCB47 outspc+12
273569 e le] 50 14|{SE109 bchout
[] 266569 5374 50 137|SFFD2 (ichrout) L]
22602 20134 45 437 |SEABD SEABD
12289 a5y 1 &57|SES1S cintl
12177 =11 1 F55|SES5F SES55F
9625 528 1665 58|SEEB1E scnkey -
8632 8532 1665 52|SFFEA udtim T
5452 143 1 143 |sDDCD inprt+11
5512 3325 1 3325/sDDDF fout+2
4138 1254 43 29|SEGEA SESEA
2584 2834 43 67 |SESFA SESFA
24994/ 1543 43 35 |SEAAL SEAAL
2288 2073 94 22|SEABZ2 SEABZ2
1302 200 5 40 (SDAEZ2 mul 10
1508 15038 4 377|SD487 striit
1236 1236 45 26|SEATE SEATE
1037 547 5 129|SD377 fadd +16 .
851 851 1 851|SFD52 restor
800 120 1 120|sD3499 faddh
565 470 5 94| sSDCOC mowaf
558 504 1 504|SE3A4% initcz
514 514 =] 85|sD9B0 mulshf+45
473 473 43 11|SESES SESBS
412 303 4 F7|sDsAG frestr+3
406G 405 7 58|(sDC5B fcomp
381 381 1 381 /sD999 mulshf+22
323 323 4 B80|SESC3 SEBC3
299 89 1 84|SDASC conupk
2491 241 1 241 |SES5BB SES5BB
190 190 2 95|sE912 SE912
159 159 9 21 |sSEAAS SEAAN i
[Reset & Close]
L. -

The example above shows typical results for the initialization routine of the Vic-20 kernal ROM.
Most of the time was spent in routine "ramtas", which checks and tests RAM available for BASIC
programs. It was only executed once, so its "Hit count" is 1 and "Avg. Cycles" equals "Cycles".

If you look at the "cycles" column, you will see that more time was spent in "membot" than in
"ramtas". What you do not see in this table is that "membot" is called by "ramtas", but you could
guess it from the cumulative call result in column "Total cycles".

"Cycles" represents the CPU cycles spent in a sub-routine without the time spent in calls to other
sub-routines. "Total cycles" includes the CPU cycles spent in calls to other sub-routines.

So, since "ramtas" calls "membot+15" and no other sub-routine, the results sum up nicely (318464
+ 165312 = 483776). From the third tab ("Tree") you will see, that "ramtas" indeed calls
"membot+15".

Arndt Miihlenfeld 14/18 2013-09-04

Vic20emu User Manual

The Call tree arranges profiling results by the observed call sequence. Calls are jumps to sub-
routines (JSR) or interrupts and the target address of a call is repesented by a sub-node of the caller
in the tree.

|2 Profiling T T = |) []

[code [calis | Tree |

=- usr ($0000 ,#=0 ,Tot. =0 ,Seg.=-536083)
SFD3F ($FD3F ,==1,Tot.=19 ,5eg.=19)

. ramtas ($FD8D ,#¥=1 ,Tot.=483775 ,5eg.=1653132)

w4 membot+15 (SFE91 ,%=7168 ,Tot. =318454 ,Seq. =318454)
- 4 restor (SFD52 ,#=1 ,Tot. =851 ,Seg.=851)

-~ || ioinit (§FDF9 ,#=1,Tot.=138 ,Seg.=108)
4 SEFE84 ($EFS84 ,#=1,Tot.=16 ,5eg.=16)
.4 SEFBD ($EFSD ,#¥=1,Tot.=16 ,Seqg.=16)
= | dntl ($E518 ,#=1,Tot.=12289 ,Seg.=857)
4 SESBE ($ESBE ,#=1,Tot.=241 ,5eg.=241)
: | SEASD [SEASD ,#=46 ,Tot. =22602 ,Seg. =20134)

L. M SEATE (SEATE ,#=46 ,Tot.=1235 ,Seg.=1238)
E} . SEABZ2 (SEAB2Z2 ,#=94,Tot.=2238 ,Seq.=2073)
- || $FF72 ($FF72 ,#=166 ,Tot.=37570 ,Seg.=19011)

- M initv ($E45B ,£=1 ,Tot. =163 ,5eq.=153)
=t | initcz ($E3A4 ,£=1 ,Tot. =558 ,Seg. =504)
s membot (§FFOC ,#£=1,Tot. =27 ,Seg. =27)
‘. # memtop (SFF99 %=1 ,Tot.=27 ,Seq.=27)
=k J initms ($SE404 ,#=1 ,Tot.=34570 ,5eg.=154)
L # reason (SC408 ,#=1 ,Tot. =12 ,5eg.=12)

| strout (SCB1E ,#=3 ,Tot.=2952% ,Seg.=1134)

L a striit (SD487 ,#=4 ,Tot.=1503 ,Seg.=1508)
; | frestr+3 (SDGAG , =4 Tot. =412 ,Seq. =308)
+ , outspc+12 {SCEB47 ,#=50 ,Tot. =28069 ,Seg. =700)
L crdo+14 (SCAES ,£=4 ,Tot.=32 ,5eg.=32)

| inprt+11 ($DDCD ,#=1 ,Tot. =8462 ,Seg. =143)
stwpt (SCBBE ,#¥=1 ,Tot. =24 ,Seg.=24)
(idall) (SFFE7 ,#=1 ,Tot.=38 ,Seg.=38)
restor (SC81D ,#=1 ,Tot.=25 ,5eg.=25)

-) strout (SCBIE ,#=3 ,Tot.=29529 ,Seqg.=1134)
- 4 setmsg (SFF30 ,#=1 ,Tot.=21 ,Seg.=21)
-y inlin {($C580 ,#=0 ,Tot. =0 ,5eg.=0)

[Reset & Close]

he = = ~—

The profiler generates the call tree only from code that is executed while profiling is active. Results
are best, if you start profiling from the outermost code, where all calls are made from. In the
example above, profiling was enabled before the CPU started execution for the first time. Hence,
the top-level node refers to address 0, which is the initial value of the program counter in the
emulator.

The call tree may be inaccurate, if the return address of a sub-routine is removed from the stack
without returning to the caller, or if the observed program puts a return address onto the stack by
other means than through JSR.

Nevertheless, the call tree is a useful tool, to analyze the structure of a program, especially if you
want to get a quick overview of code you do not know yet. You can always double-click on a node
of the tree to navigate to its address in the debugger window.

Note: Statistics are only updated, when the profiling window initialises. If you continue profiling

while the profiling window is open, it will not refresh. In order to get actual results, close the
window and open it again from the debugger window.

Arndt Miihlenfeld 15718 2013-09-04

Vic20emu User Manual

I/0 inspection

The two VIAs handle peripheral input and output of the
VIC-20, i.e., the keyboard, a joystick and the IEC serial
bus, which connects the VIC-20 to printers and disc
drives. Vic20emu lets you examine the state of the VIAs
with respect to I/O, timers and interrupts.

The dialog updates its contents only when the CPU is
stopped, so you can not see the timers counting down
while the program is running. So this dialog presents a
snapshot of the VIAs state.

You can not modify the values in this dialog directly, but
you can write to the VIA's registers by using the button
"Register values...".

The Via 6522 has two 8-bit ports (A and B) for digital
input and output. Each of the 8 port lines can be used for
input or ouput. If a port line is in input mode, the state
LED in the "In" row is active. If a port line is in output
mode its LED in the "Out" row is active (bright red or
green).

A green LED indicates that the port bit is in logical high
state ('1'). The red LED corresponds to logical low ("0").

In addition the the 8 port lines each port has two
handshake lines (Cx1 and Cx2). Their operating mode is
controlled by the port control register (PCR) and the
current setting is shown in the small icon right to the
LED. Move your mouse cursor over the icon to get a tool-
tip with a description of the current mode.

The dialog helps you to debug programs that write to or
read from the ports, by showing you the states of the ports

P

L& vIA 1

Timer 1

Latch

Timer

Mode

Timer 2

Latch

Timer

Mode

Shift

Latch

Value

Mode

IRQ

Flags

Mask

Active

s0000|

<0000

<0000

S0000

00000000
00000000

0

00000000

210000000

Register values... |

Port A

In Qut
ran O @
ral D) @
ra2 O @
ras O @
rad O @
ras O @
ras O @
ra7 O @

cal @
ca2 @ e

FortB

In Qut
re0 O @
rE1 O @
ez 0D @
ez 0D @
res 10 @
s O @
res O @
7 O @

cB1 @
2 @ e

at a certain point in you program. For debugging protocols like the serial protocol used for the disk
drives and printers, this is only useful, if you almost know, where your program fails, so that you
can single step through the suspicious code, while observing the states of the port lines. Sometimes
the bug only shows up under certain circumstances, perhaps after transmitting hundreds of bytes
and when you notice it, you would have to rewind executing for a lot of cycles to locate its cause.

Vic20emu can do this for you by logging the states of the port
lines over a defined number of signal changes. Port state logging
slows down execution of the emulation significantly, so you have
to enable it in the setup dialog that shows up, when you start the

emulator without command line options.

If you enable port state logging, signal graphs are attached to the

VIA dialogs and the IEC Simulation dialog ("Debug IEC").

Arndt Miihlenfeld 16/18

-

| £ Setup Emulator [é]

Vic-20

[IEC device simulation

[] FE3 RAM support

-

Log port state (Howt
| Ok | | Cancel |
2013-09-04

Vic20emu User Manual

Each of the I/O lines PAO to PA7 and PBO to PB7 have to signal graphs. One for its output value
and one for its input. For example the input graph for PAO is labelled PAOi and shown in grey,
whereas the output signal is labelled PAOo and drawn in black.

(2] via1 -
7 -
Timer 1] 44 {l 1000
Latch £0000 Port A :
PAQ
In Qut PADo J I——I
Timer S0000 PAL
0 @ @ Palo I1 |
Mode 1 i@ @ g2
P2 O @ PAS
Timer 2 PAZ O . PAZo
PA4i
Latch 0000 Pt O @ P_"?'q_"
O @ |5,
Timer §0000 ris O @ PAGI
@ Q@ |
Mode 0 a1 @ 3 PAZo
— cal
caz —_—
shift o
CA2
Latch owooooooon || Ot 2]
In QCut FPBE1i
Value 600000000 o O @ :Slo
B2
D @ B2
Mode 4] PESi
2 O @ PE3
s @ P4
R o
e e O @ PES|
PES
Flags 200000000 s O @ FE__O
"B
s O @ PBEG
Mask %£10000010 re7) : EE?'o
CB1
Active 34,00000000 © i_ CB1 |
cB2 —
O CB2
Register values. .. 5635951 5636201 5636451 5636701 5636950

Of course, each port bit is alway either in input or output mode, but its mode can change during
execution and by showing the signals with different graphs you can see at a glance which mode the
port was in.

Use the combobox heading the dialog page to select the signal range to display and scroll back and
forth in time with the arrow indicators on both sides of the combobox. The time scale is marked in
clock ticks elapsed since the start of the emulator, the same value you find in the register panel of
the debugger.

Viewing and editing memory contents

Vic20emu has a powerful hex editor for viewing, and manipulating memory data. It shows all RAM
that is theoretically available to the CPU, but does not show register values. In FE3 mode the
additional 512K RAM is segmented into 16 banks of 32K RAM each, because that is how the
memory is organised in Super RAM mode.

Besides viewing and editing memory content directly as byte values or text, you can select memory
areas with the mouse (move the mouse while holding the left button) and use the context menu

Arndt Miihlenfeld 17718 2013-09-04

Vic20emu User Manual

(right mouse click) to copy, paste, fill, save, or load selected memory regions.

L Memory | =)

Baze memory (64]) |

oo o0l 02 I:Idl 05 086 07 05 02 0a Ob Oc 04 Ode Of
a3

qooooaoo 4e 43 d2 dl 91 43 22 22 00 00 00 00 ££ 00 00 LH e
oooooold Qo 00 00 0o 0o oo 1% 18 00 0a Te o3 00 00 00 00 v
QooooozZo 0o 00 76 c3 b3 dd 00 00 00 00 00 01 10 03 10 03 W

Qooooaso 10 03 10 00 le 00 00 00 le 00 00 0O 00 00 00 00

00000040 00 00 10 00 00 00 00 24 00 00 00 00 00 00 00 00 $
|:u:| a0 UDE" se—==—=5 0o QO 00 00 00 fb 00 Q0 |:|L

00000060 00 Da 76 selectall |\ g 30 00 00 o0 04 00 7B w v
00000070 00 80 o3 el , 7b ad 00 10 c9 3a b0 0a z | :
00000080 ©9 20 £0 ef o= Copy : 29 40 60 80 4F o7 52 5B 5 08 0 RX
00000090 00 ££ 00 O % poge | 00 00 03 00 00 B0 00 00

00000020 00 00 65 Of | 00 00 0O 00 0O 0O 00 0O e

000000b0 00 00 3c O Settpp | U0 00 00 00 00 00 00 00 <

000000cD 00 00 20 6 _ | 00 05 00 40 00 03 20 01 n B @
0odoondo 00 ée le 0 Fill.. 1 00 9 le 92 92 92 92 92 n

000000ed 9e 9e 9 S © 9f 9f 9f 9f 9f 9f 9f O9f

000000ED 9f ££ 00 6 B save. | 00 00 00 00 0O 00 00 20 n

0OD0OLOD 33 35 38 3| 5 Lload.. J 30 30 00 00 00 00 00 00 3583 00000

Qoooollo oo 00 00 0 oo oo oo owod 00 00 00 00 00 00 o0 00

noOmnmmT an [nln} [nln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln} [aln}

The search box in the top of the dialog lets you search for text or numbers. Move your mouse over
the input field to get a description of how to format your seach string.

Vic 1541 Emulation & Future work

For now, the Vic-1541 emulator consists of a CPU, memory and the two VIAs. It lets you debug the
drive's code up the the point, where feedback from the I/O ports is needed. For a fully usable
implementation, the emulator should also implement the drives hardware to a certain extend. I
intend to extend the emulation with respect to the drives hardware and then hook the Vic-1541
emulation up to the Vic-20 emulation thereby replacing the IEC Simulation.

That would form a system that is perfectly suited to examine software that is loaded into the Vic-
1541's RAM, like fast loaders, because you could debug both systems at the same time.

Before doing that, I need to improve the execution speed of the emulator, which is not overly
difficult, but takes some time. At present speed, emulating two systems at the same time is just not
feasible, particularly because I/0O needs high accuracy and therefore minimum speed in the present
configuration.

Arndt Miihlenfeld 18/18 2013-09-04

	Introduction
	Running the Emulator
	Getting Started
	Vic Output (screen)
	Vic Keyboard
	Vic Joystick
	Console

	Running a Program
	The Debugger Window
	The IEC Window (Debug IEC)
	Startup Scripts
	Symbols
	Profiling
	I/O inspection
	Viewing and editing memory contents
	Vic 1541 Emulation & Future work

