

 RANDOMIZE subprogram PAGE R1

 Format RANDOMIZE

 RANDOMIZE SEED

 Description

 The RANDOMIZE command can be found on XB manual page 151 to
 help explain it's use. RXB unlike any other XB produced has
 a feature that makes RND and RANDOMZE different and better.
 RANDOMIZE SEED in RXB is same as TI BASIC randomize seed.
 Thus in RXB do not expect the same random numbers as you
 would get with any other XB made. RXB is way more random
 due to this change different then any other Extended Basic.

 Program

 Will put hex >3567 into seed | >100 RANDOMIZE
 RND example to prove speed | >110 DIM N(100)
 Counter in a FOR loop | >120 FOR X=1 TO 100
 Load Array with random numbers| >130 N(X)=RND
 Show that number | >140 PRINT N(X)
 Repeat loop till done | >150 NEXT X

 Run this above example in TI BASIC, XB and RXB 2020 to
 show game type results of program results with new RND

 Options
 Random Music programs will sound very very fast due to
 the speed increase in RXB RND is much faster.

 RES command PAGE R2

 Format RES (Uses default values)

 RES initial line,increment

 RES initial line,increment,start line-end line

 Description

 The RES command is the same as per Extended Basic Manual page
 155. The RESEQENCE command is deleted. The abbreviation RES is
 the only access name. The RES command now allows a portion of
 the program to be resequenced. This RES DOES NOT REPLACE any
 undefined line numbers with 32767. Any undefined line numbers
 in the program are left as is. This makes it easier to fix if
 a problem is present. RES cannot be used to move lines from
 one location to another inside a program. If the new line
 numbers generated by the RES command would result in a line
 being moved, a Bad Line Number Error is generated. A Bad Line
 Number Error is also reported if there are no valid program
 lines between start line and end line.

 Command

 Lines 10 to 50 are renumbered.| >RES 20,1,10-50
 Line 10 becomes 20, increment |
 is 1. |
 Lines 700-800 are renumbered. | >RES ,5,700-800
 Line 700 becomes 100, |
 increment is 5. |
 Lines 50-80 are renumbered. | >RES ,,50-80
 Line 50 becomes 100, |
 increment is 10. (Default) |
 Lines 1000 to last line are | >RES 1000,,750-
 renumbered. Line 750 becomes |
 1000, increment is 10. |
 Lines to 400 are renumbered. | >RES ,20,-400
 First Line becomes 100 |
 (Default), increment is 20. |
 Line 40 is renumbered 20. | >RES 20,,40
 |

 RMOTION subprogram PAGE R3

 Format CALL RMOTION(#sprite-number[,...])

 CALL RMOTION(ALL[,...])

 Description

 The RMOTION subprogram reverses the row-velocity and
 column-velocity as numbers from -127 to 127. This means that
 RMOTION simply reverses the direction of the sprite specified
 so it goes in the opposite direction it was going in.
 This also means RMOTION ignores 0 and -128, so you can use
 those to bypass RMOTION if you do not want RMOTION to change
 the sprite. The fastest and slowest sprite speeds are never
 affected by RMOTION. This feature adds more power to RMOTION.
 The ALL feature also allows all sprites on the screen to
 reverse all at once. ALL may also be called as many times as
 wanted in a single program line.

 Program

 RMOTION reverses the row- | >100 CALL RMOTION(#1)
 velocity and the column- |
 velocity in sprite-number 1. |
 |
 This line reverses the motion | >100 CALL RMOTION(ALL)
 of all sprites. |
 |
 Line 100 sets up a sprite. | >100 CALL SPRITE(#1,33,2,96,1
 | 8,99,84)
 Line 110 waits for a number | >110 IF RND<.8 THEN 110
 higher than .8 randomly. |
 Line 120 reverses the motion | >120 CALL RMOTION(#1)
 of the sprite. |
 Continues the program. | >130 GOTO 110

 Options
 While characters 144 to 159 are being used, you cannot use
 sprites.

 RND subprogram PAGE R4

 Format RND

 Description

 The RND subprogram in RXB has been replaced with a TI BASIC
 version as the normal XB RND subprogram is hindered with so
 much Floating Point as to make it 3 times slower then the
 TI BASIC version of RND. Extensive testing proves that the
 new RXB RND is many times faster then the previous version.
 There will actually be some programs expecting a particular
 RND pattern of random numbers that will no longer work the
 same as a result of this change. But games will appear more
 random then normal Extended Basic.
 The RANDOMIZE seed still works but the results of the that
 pattern of random numbers will be different then normal XB,
 thus unless absolutely required will be a bigger benefit
 then the cost of this XB previous feature.

 Program

 RND example to prove speed | >100 DIM N(100)
 Counter in a FOR loop | >110 FOR X=1 TO 100
 Load Array with random numbers| >120 N(X)=RND
 Show that number | >130 PRINT N(X)
 Repeat loop till done | >140 NEXT X

 Run this above example in TI BASIC, XB and RXB 2015 to
 show game type results of program results with new RND

 Options
 Random Music programs will sound very very fast.

 ROLLDOWN command or subprogram PAGE R5

 Format CALL ROLLDOWN

 CALL ROLLDOWN(repetition)

 Description

 ROLLDOWN scrolls screen to the down so repetition will
 repeat the scroll number of times to down.
 Repetition can be 1 to 256 max.

 Programs

 Roll screen down 2 times | >CALL ROLDOWN(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen down | >110 CALL ROLLDOWN
 Repeat the program | >100 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL DOWN"
 Print X$ | >110 PRINT X$
 Roll down 9 times use X$ | >120 CALL ROLLDOWN(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLLEFT command or subprogram PAGE R6

 Format CALL ROLLLEFT

 CALL ROLLLEFT(repetition)

 Description

 ROLLLEFT scrolls screen to the left so repetition will
 repeat the scroll number of times to left.
 Repetition can be 1 to 256 max.

 Programs

 Roll screen left 2 times | >CALL ROLLLEFT(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen left | >110 CALL ROLLLEFT
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL LEFT"
 Print X$ | >110 PRINT X$
 Roll left 9 times use X$ | >120 CALL ROLLLEFT(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLRIGHT command or subprogram PAGE R7

 Format CALL ROLLRIGHT

 CALL ROLLRIGHT(repetition)

 Description

 ROLLRIGHT scrolls screen to the right so repetition will
 repeat the scroll number of times to right.
 Repetition can be 1 to 256 max.

 Programs

 Roll screen right 2 times | >CALL ROLLRIGHT(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen right | >110 CALL ROLLRIGHT
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" ROLL RIGHT"
 Print X$ | >110 PRINT X$
 Scroll right 9 times use X$ | >120 CALL ROLLRIGHT(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLUP command or subprogram PAGE R8

 Format CALL ROLLUP

 CALL ROLLUP(repetition)

 Description

 ROLLUP scrolls screen to the up so repetition will
 repeat the scroll number of times to up.
 Repetition can be 1 to 256 max.

 Programs

 Roll screen up 2 times | >CALL ROLLUP(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen UP | >110 CALL ROLLUP
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL UP"
 Print X$ | >110 PRINT X$
 Roll up 9 times use X$ | >120 CALL ROLLUP(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SAMS subprogram PAGE S1

 Format CALL SAMS(address-boundry,page-number[,...])

 CALL SAMS(address-boundry,numeric-variable
 [,...])

 CALL SAMS(command [,...])

 Description

 The SAMS command will only work with a SAMS memory card.
 The address-boundry is a value in Hexadecimal denoted by
 2 is >2000 or 3 is >3000 or A is >A000 or D is >D000
 EXAMPLE: CALL SAMS(3,page-number[,...])
 This 3 stands for >3000 hexidecimal address boundry.
 CALL SAMS uses boundry symbols upper case only.
 i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
 D = >D000, E = >E000 and F = >F000
 SAMS turns on the read/write lines of SAMS mapper registers
 stores the value into the mapper register chosen. Less wasted
 pages results in more memory available.Page numbers can be
 from 0 to 16383 so it is hard to explain this easy.
 See 16383 would be >FFFF hexidecimal 64 Meg SAMS. Pages 0 to
 255 would be a 1 Meg SAMS, Pages 256 to 511 would be a 2 Meg
 SAMS, so on up to page 7935 to 8191 would be 32 Meg SAMS.
 Pages 8192 to 16383 would be above 32K Meg SAMS so RXB 2020
 handles 64 Meg SAMS, but not tested above 32 Meg yet.
 (*Note: 16384 to 32767 would be for above 32 Meg to 64 Meg.)
 A addtional new feature in 2020 RXB SAMS is use of upper 24K
 memory can now be switched, but of course care must be taken
 or will crash XB by removing the program running SAMS from
 upper 24K. Imagine 8 Meg XB program swapping lines.
 The order of changing 4K pages does not matter thus a
 CALL SAMS(A,55,3,34) example is put 4K page 55 SAMS Memory
 at >A000 and 4K page 34 at >3000

 Original SAMS commands like ON, OFF, MAP or PASS still work.
 "ON" turns on Mapper Registers.
 "OFF" turns off Mapper Registers.
 "MAP" turns on Map Mode so pages can be changed.
 "PASS" default mode making the SAMS just like a normal 32K.

 SAMS subprogram PAGE S2

 Example is mixing commands:
 100 CALL SAMS("ON","MAP",2,237,"OFF")
 This turns on SAMS read/write Registers, turns on MAP mode,
 sets 4K page with page 237 than turns off SAMS read/write
 Registers.

 Programs

 This turns on the SAMS mapper.| >110 CALL SAMS("ON")
 This reads low half 8K page. | >120 CALL PEEK(16388,L)
 This reads high half 8K page. | >130 CALL PEEK(16390,H)
 This shows pages used. | >140 PRINT "LOW";L;"HIGH";H
 This loads a assembly program.| >150 CALL LOAD("DSK1.CHAR")
 This changes low/high 4K pages| >160 CALL SAMS(2,16,3,17)
 This loads a assembly program.| >170 CALL LOAD("DSK1.DUMP")
 This changes low/high back. | >180 CALL SAMS(2,L,3,H)
 This uses a routine in CHAR. | >190 CALL LINK("CHAR")
 This changes low/high again. | >200 CALL SAMS(2,16,3,17)
 This uses a routine in DUMP. | >210 CALL LINK("DUMP")
 |
 The above example program shows one RXB program using two
 assembly programs with links for both. Thus only 16K of the
 SAMS was used. 1024K would be 120 assembly support programs
 Compatibility of most software assured in RXB AMS support.

 Options:
 See ON, OFF, MAP and PASS pages in RXB Documents for more
 information on SAMS.

 PAGE S3
 SAMS MAPPER
 **
 The SAMS card has tons of documents as to its function and use.
 So to re-explain these docs would be pointless. Read the docs or
 find some, sorry but the RXB package is already huge.
 In PASS mode the mapper register setup is equivalent to:

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >02 = 02 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >03 = 03 points to >3000 - >3FFF range
 >4014 = 16404 is MR10 = >0A = 10 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >0B = 11 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >0C = 12 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >0D = 13 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >0E = 14 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >0F = 15 points to >F000 - >FFFF range
 (MR=Mapper Register)

 In MAP mode the mapper register setup is equivalent to: EXAMPLE1

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >10 = 16 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >11 = 17 points to >3000 - >3FFF range
 >4014 = 16404 is MR10 = >12 = 18 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >13 = 19 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >14 = 20 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >15 = 21 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >16 = 22 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >17 = 23 points to >F000 - >FFFF range

 (MR=Mapper Register)

 PAGE S4
 SAMS MAPPER

 In map mode the mapper register setup is equivalent to: EXAMPLE2

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >62 = 98 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >63 = 99 points to >3000 - >3FFF range

 >4014 = 16404 is MR10 = >64 = 100 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >65 = 101 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >66 = 102 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >67 = 103 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >68 = 104 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >69 = 105 points to >F000 - >FFFF range

 (MR=Mapper Register)

 In MAP mode the mapper register setup is equivalent to: EXAMPLE3

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004=16388 is MR02 =>1FF9 = 8185 points to >2000 - >2FFF range
 >4006=16390 is MR03 =>1FFA = 8186 points to >3000 - >3FFF range

 >4014=16404 is MR10 =>1FFB = 8187 points to >A000 - >AFFF range
 >4016=16406 is MR11 =>1FFC = 8188 points to >B000 - >BFFF range
 >4018=16408 is MR12 =>1FFD = 8189 points to >C000 - >CFFF range
 >401A=16410 is MR13 =>1FFE = 8190 points to >D000 - >DFFF range
 >401C=16412 is MR14 =>1FFF = 8191 points to >E000 - >EFFF range
 >401E=16414 is MR15 =>2000 = 8192 points to >F000 - >FFFF range

 (MR=Mapper Register)

 SAVE command PAGE S5

 Format SAVE DSK3.PRGM

 SAVE DSK2.PRGM,IV254

 Description

 The SAVE command functions normally to save XB programs.
 An additional freature is IV254 may be specified after the
 SAVE command to convert to Internal Variable 254 format.
 The IV254 format makes it much more easy to tell an XB
 program from EA programs when cataloging a disk.
 Internal Variable files do take up one sector more then
 XB program format. It should be noted that XB programs
 smaller then 3 sectors can not be saves in IV254 format.

 Command

 Saves to DISK 2 in XB program | >SAVE DSK2.TEST
 image format TEST |
 |
 Saves to disk 3 in XB program | >sAVE DSK3.STUFF,IV254
 Internal Variable 254 named |
 STUFF |
 |
 Saves to WDS1 in dirctory EXB | >SAVE WDS1.EXB.RB,IV254
 XB program Internal Variable |
 254 named RB |
 |

 Options
 Allows better cataloging options for saving XB files.

 SCREEN command or subprogram PAGE S6

 Format CALL SCREEN(color-code[,...])

 CALL SCREEN("OFF"[,...])

 CALL SCREEN("ON"[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 165 for more data.
 RXB has added features of OFF and ON to the SCREEN
 command. OFF turns off the screen display while the ON
 turn the screen back on. Use of OFF command allows for
 writing to screen happens but not visible to user.

 Programs

 Turn screen to white | >100 CALL SCREEN(16)
 |
 Turn off the screen display | >100 CALL SCREEN("OFF")
 Prints line but screen off | >110 PRINT "THE SCREEN IS OFF"
 Waits for any key | >120 CALL KEY("",5,K,S)
 This opens a RS232 port. | >130 CALL SCREEN("ON")
 Prints line but screen on | >140 PRINT "NOW SCREEN ON"
 Waits for any key | >150 CALL KEY("",5,K,S)
 Special effect use of SCREEN | >160 CALL SCREEN(0,2,0,2,0,2)

 Options
 New features allow for some special effects like draw screen
 while screen is off and then pop it to user. Or use of the
 comma to switch colors making some special effects.

 SCROLLDOWN command or subprogram PAGE S7

 Format CALL SCROLLDOWN

 CALL SCROLLDOWN(repetition)

 CALL SCROLLDOWN(repetition,string)

 CALL SCROLLDOWN(repetition,string,tab)

 Description

 SCROLLDOWN scrolls screen to the down so repetition will
 repeat the scroll number of times down, the string will only
 display horizontally 32 characters of the string on right
 side of screen. SCROLLDOWN puts the string on screen and
 wraps to bottom if string is to long.
 If the string is empty (null) it will just scroll the screen.
 Like PRINT TAB will go to next line right of left side of
 screen each line till end of string. Numbers or varaibles
 can be used instead of a string.

 Programs

 Scroll down 2 times print PI | >CALL SCROLDOWN(2,PI)
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line | >110 PRINT "SCREEN PRINT"
 Scroll screen down | >120 CALL SCROLLDOWN
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL DOWN"
 Print X$ | >110 PRINT X$
 Scroll down 9 times use X$ | >120 CALL SCROLLDOWN(9,X$)
 Repeat the program | >130 GOTO 100

 SCROLLLEFT command or subprogram PAGE S8

 Format CALL SCROLLLEFT

 CALL SCROLLLEFT(repetition)

 CALL SCROLLLEFT(repetition,string)

 CALL SCROLLLEFT(repetition,string,tab)

 Description

 SCROLLLEFT scrolls screen to the left so repetition will
 repeat the scroll number of times left, the string will only
 display vertically 24 characters of the string on left side
 of screen. SCROLLLEFT unlike SCROLLRIGHT puts the string on
 screen and wraps to other side if string is to long.
 If the string is empty (null) it will just scroll the screen
 each line till end of string. Numbers or variables can be
 used instead of a string.

 Programs

 Scroll left 2 times print PI | >CALL SCROLLLEFT(2,PI)
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line | >110 PRINT "SCREEN PRINT"
 Scroll screen left | >120 CALL SCROLLLEFT
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL LEFT"
 Print X$ | >110 PRINT X$
 Scroll left 9 spaces use X$ | >120 CALL SCROLLLEFT(9,X$)
 Repeat the program | >130 GOTO 100

 SCROLLRIGHT command or subprogram PAGE S9

 Format CALL SCROLLRIGHT

 CALL SCROLLRIGHT(repetition)

 CALLL SCROLLRIGHT(repetition,string)

 CALL SCROLLRIGHT(repetition,string,tab)

 Description

 SCROLLRIGHT scrolls screen to the right so repetition will
 repeat the scroll number of times right, the string will
 only display vertically 24 characters of the string.
 SCROLLRIGHT unlike SCROLLLEFT puts the string on screen
 and does not wrap to other side if string is to long.
 If the string is empty (null) it will just scroll the
 screen each line till end of string. Numbers or variables
 can used instead of a string.

 Programs

 Scrollright 2 times print PI | >CALL SCROLLRIGHT(2,PI)
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line but screen off | >110 PRINT "SCREEN PRINT"
 Scroll screen right | >120 CALL SCROLLRIGHT
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL RIGHT"
 Print X$ | >110 PRINT X$
 Scroll right 9 spaces use X$ | >120 CALL SCROLLRIGHT(9,X$)
 Repeat the program | >130 GOTO 100

 SCROLLUP command or subprogram PAGE S10

 Format CALL SCROLLUP

 CALL SCROLLUP(repetition)

 CALL SCROLLUP(repetition,string)

 CALL SCROLLUP(repetition,string,tab)

 Description

 SCROLLUP scrolls screen up so repetition will repeat the
 scroll number of times to up, the string will only display
 horizontally 32 characters of the string. SCROLLUP puts
 the string on screen and wraps to top if string is to long.
 If the string is empty (null) it will just scroll the
 screen each line till end of string. Numbers or variables
 can be used instead of a string.

 Programs

 Scroll up 2 times print PI | >CALL SCROLLUP(2,PI)
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line but screen off | >110 PRINT "SCREEN PRINT"
 Scroll screen UP | >120 CALL SCROLLUP
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL UP"
 Print X$ | >110 PRINT X$
 Scroll up 9 spaces use X$ | >120 CALL SCROLLUP(9,X$)
 Repeat the program | >130 GOTO 100

 SIZE command or subprogram PAGE S11

 Format SIZE

 CALL SIZE

 Description

 See EXTENDED BASIC MANUAL PAGE 169 for more data.
 RXB has added many more features to SIZE. RXB shows the
 size and memory address of VDP, RAM and SAMS. Very uselful
 for XB or Assembly progammers. EXAMPLE:

 >SIZE
 11840 Bytes of Stack Free
 24488 Bytes of Program
 8192 Bytes of Assembly
 * PAGE NUMBER = LOCATION *
 2 Page = >2000 - >2FFF
 3 Page = >3000 - >3FFF
 10 Page = >A000 - >AFFF

 11 Page = >B000 - >BFFF
 12 Page = >C000 - >CFFF
 13 Page = >D000 - >DFFF
 14 Page = >E000 - >EFFF
 15 Page = >F000 - >FFFF
 * MEMORY UNUSED and FREE *
 >37D7 VDP Free Address
 >0958 VDP STACK Address
 >FFE7 Program Free Address
 >A040 Program End Address
 >2000 RAM Free Address
 >4000 RAM End Address

 This shows normal XB values but also includes more
 useful things like Assembly free and SAMS pages
 used and where these pages are. Lastly it shows
 VDP STACK location, First free VDP address, XB RAM
 First free address and End address. Lastly first
 free Assembly address and End address used. SAMS size is
 not reported just like Foppy size or hard drive is'nt!

 SIZE command or subprogram PAGE S12

 Format SIZE

 CALL SIZE

 Command

 May only be used from command | >SIZE
 mode. |
 |
 Programs

 May only be used from program | >100 CALL SIZE
 mode. |
 Delay for keypress. | >110 CALL KEY("",0,K,S)
 Set up for Assembly support. | >120 CALL INIT
 Shows memory used including | >130 CALL SIZE
 Assembly space free. |
 Set VDP STACK to >1820 hex. | >140 CALL VDPSTACK(6176)
 Show VDP STACK location. | >150 CALL SIZE
 Delay for keypress. | >150 CALL KEY("",0,S,S)
 Set XB RAM to >A000 hex. | >160 CALL PRAM(-24576)
 Shows 64 more bytes of XB RAM | >170 CALL SIZE
 for use in XB. |

 STOP (MOTION) option for subprogram PAGE S13

 Format CALL MOTION(STOP[,...])

 Description

 The STOP command is a option in the MOTION subprogram.
 STOP does exactly what you would expect, stop all sprite
 motion and freezes the sprites in place.

 Programs

 See MOTION subprogram for examples of use of STOP.

 SWAPCHAR subprogram PAGE S14

 Format CALL SWAPCHAR(character-code,character-code
 [,...])

 Description

 The SWAPCHAR subprogram switches the first character-code
 character definition with the second character-code
 character definition. That means they swap definitions.
 The characters range from 30 to 159.

 Programs

 Line 100 swaps character-code | >100 CALL SWAPCHAR(65,97)
 65 with character-code 97. |
 |
 Line 100 defines character- | >100 CALL CHAR(128,"F0F0F0F0F
 code 128 and character-code | 0F0F0F0",159,"0F0F0F0F0F0F0F
 159. | 0")
 Line 110 swaps them, then will| >110 CALL SWAPCHAR(128,159,32
 swap space with character 128 | ,128)
 Line 120 continues program. | >120 GOTO 110
 |
 Try this one on for weird. | >100 CALL SWAPCHAR(31,32,31,3
 | 2)
 | >110 CALL INVERSE(31)
 | >120 GOTO 100
 |

 SWAPCOLOR subprogram PAGE S15

 Format CALL SWAPCOLOR(character-set,character-set
 [,...])

 CALL SWAPCOLOR(#sprite-number,#sprite-number
 [,...])

 Description

 The SWAPCOLOR subprogram swaps foreground and background
 colors of the first set with the second set. Or swaps the
 first sprite-number color with the second sprite-number
 color. The character-set numbers are given below:

 set-number character-codes
                         ~~~~~~~~~~          ~~~~~~~~~~~~~~~
                               0   ----------  30  to   31
                               1   ----------  32  to   39
                               2   ----------  40  to   47
                               3   ----------  48  to   55
                               4   ----------  56  to   63
                               5   ----------  64  to   71
                               6   ----------  72  to   79
                               7   ----------  80  to   87
                               8   ----------  88  to   95
                               9   ----------  96  to  103
                              10   ---------- 104  to  111
                              11   ---------- 112  to  119
                              12   ---------- 120  to  127
                              13   ---------- 128  to  135
                              14   ---------- 136  to  143
          (also sprite table) 15   ---------- 144  to  151
          (also sprite table) 16   ---------- 152  to  159
 
          



          SWAPCOLOR      subprogram                            PAGE S16 
          -------------------------------------------------------------
 
          Format         CALL SWAPCOLOR(character-set,character-set
                         [,...])
 
                         CALL SWAPCOLOR(#sprite-number,#sprite-number
                         [,...])

          Programs
 
          Swap foreground and background| >100 CALL SWAPCOLOR(15,5)
          colors of set 15 with set 5.  |
                                        |
          Line 100 sets up two sprites  | >100 CALL SPRITE(#1,65,2,99,9
          on screen.                    |  9,9,9,#2,66,16,88,88,22,33)
          Line 110 swaps sprite #1 color| >110 CALL SWAPCOLOR(#1,#2)
          with sprite #2 color.         |
          Continue program.             | >120 GOTO 110



          USER           subprogram                            PAGE  U1
          -------------------------------------------------------------
 
          Format         CALL USER(quoted-string)
 
                         CALL USER(string-variable)
 
          Description
 
          The USER subprogram overrides the normal editor of edit mode
          of XB and reads a DV80 file into the key scan routine as if
          the user was keying it in.
           That means Batch Processing is creating XB programs from
          DV80 files, Editing XB programs, MERGING, Saving, and
          RUNNING XB programs. Also RESequencing, adding lines, or
          deleting lines, and re-writing lines from the DV80 file.
           Every line to be input from the DV80 file MUST END WITH A
          CARRIAGE RETURN! A line of input may be up to 588 characters
          in length. The editor will error out if the crunch buffer is
          full, reporting a *Line Too Long* error. (Over 163 tokens)
           Other errors will be reported but will not stop the process
          of USER continuing to input lines. To find errors in the DV80
          file the input lines are shown on screen as they are input
          into the editor, and errors will be reported. So you must
          observe the screen for errors to test the DV80 file.
           USER will stop after reaching the end of the file. But USER
          can have its operation suspended CALL POKEV(2242,0) will
          halt USER and CALL POKEV(2242,9) will resume USER.
           INPUT and ACCEPT will try to read from USER if it is not
          turned off. On the other hand DV80 files can go directly into
          a INPUT or ACCEPT prompts. Turn off USER to be safe though.
           USER will only report errors upon opening, thus if incorrect
          device or filename then USER reports * USER ERROR * and just
          closes the USER file, thus ending operation of USER.
           Example files are included with RXB to show and explain the
          use of USER. The batch processing USER subprogram opens a new
          world to the RXB programmer. 
          Addtionally new commands like CALL VDPSTACK and CALL PRAM used
          with CALL USER means you can modify the entire XB memory in 
          both VDP and RAM from a BATCH file.
          Possibilities are almost endless!



          USER           subprogram                            PAGE  U2
          -------------------------------------------------------------

          Programs
 
          This line starts USER to use  | >CALL USER("DSK1.FILENAME")
          Batch processing on a file    |
          called FILENAME               |
                                        |
          Line 100 is same as above.    | >100 CALL USER("DSK1.FILE")
          but within a program.         |
                                        |
          Line 100 variable A$ equals a | >100 A$="DSK.VOLUME.FILE"
          String-variable path name.    |
          Line 110 starts USER to use   | >110 CALL USER(A$)
          Batch processing on A$        |
                                        |
          Save this program as LOAD.    | >100 CALL USER("DSK1.BATCH")
                                        |
 
          Here is an example DV80 file you save with the name BATCH.
 
                        ! BATCH file for using 
                        NEW and CALL FILES and RUN. cr
                        cr
                        CALL XB("DSK1.A-PROGRAM",#) cr
                        ! The # is 0 to 15 (see FILES)
 
         The above DV80 file uses cr to mean Carriage Return. And # is
        for the number of files you wish open. A-PROGRAM is the name of
        the XB program that needs a certain number of files open.
 
        Options
        To many to list out. See BATCH for demo.



          VCHAR          subprogram                            PAGE  V1
          -------------------------------------------------------------
 
          Format         CALL VCHAR(row,column,character-code)
 
                         CALL VCHAR(row,column,character-code,
                         repetition[,...])
 
          Description
 
           See EXTENDED BASIC MANUAL page 188 for more data. The only
          syntax change to VCHAR is the auto-repeat function. Notice the 
          new auto-repeat must have the repetitions used or it gets row
          confused with repetitions. Also RXB HCHAR is now in ROM.
          
 
          Programs
 
          This line puts character 38 at| >100 CALL VCHAR(1,1,38,99,9,1
           row 1 column 1 for 99 times, |  ,87)
           then puts character code 87  |
           at row 9 column 1            |
                                        |
          Fills screen with characters. | >100 CALL VCHAR(1,1,32,768,1,
                                        |  1,65,768,1,1,97,768,1,1,30,
                                        |  768) :: GOTO 100
                                        |

          Options
          CALL VCHAR is now written in Assembly so much faster is
          faster than normal XB, also as separate line numbers are
          needed to continue placing characters on screen.
          See HCHAR, HPUT, VPUT, HGET and VGET.



          VDPSTACK       subprogram                            PAGE  V2
          -------------------------------------------------------------

          Format         CALL VDPSTACK(numeric-variable)  

          Description

          The VDPSTACK subprogram allows change of location of the VDP
          STACK in VDP RAM. Care must be taken to where you place the
          stack after all any over write or change can crash XB.
          Normal VDP stack location is 2392 in decimal >0958 in Hex.
          Some XB programs like The Missing Link use 6176 or >1820 Hex.
          Another location would be like 4096 which is >1000 in Hex.
           Combine PRAM with VDPSTACK and Assemlby can be loaded into
          any memory locations previously very hard to use. That 
          required special loaders so now RXB has PLOAD and PSAVE to 
          get around these problems of loading anywhere in 32K now.

          Programs
 
          This line clears screen.      | >100 CALL CLEAR
          Set VDP STACK location.       | >110 CALL VDPSTACK(6176) 
          Display it.                   | >120 PRINT ">1820 STACK LOCAT 
                                        | ION"
          Show results.                 | >130 CALL SIZE
          Wait for key pressed.         | >140 CALL KEY("",0,S,S)
          Set VDP STACK location.       | >150 CALL VDPSTACK(4096)
          Display it.                   | >160 PRINT ">1000 STACK LOCAT
                                        | ION"
          Display it.                   | >170 CALL SIZE 
                                        |

          Options
          See PRAM for similar change to RAM locations. Also see 
          PLOAD and PSAVE for loading anywhere in 32K RAM.



          VERSION        subprogram                            PAGE  V3
          -------------------------------------------------------------
 
          Format         CALL VERSION(numeric-variable)
 
          Description
 
          See EXTENDED BASIC MANUAL PAGE 190 for more data. 
          Also see Programs below.
 
          This line will ask for version| >CALL VERSION(X)
          and return current to numeric-|
          variable X.                   |
                                        |
          Line 100 asks for version num.| >100 CALL VERSION(V)
          Line 110 checks for version   | >110 IF V<2016 THEN INPUT "DSK
          to be larger than 2001 and if |  NAME":D$ :: INPUT "FILENAME"
          it is will ask for input to   |  :F$ :: CALL XB("DSK."&D$&F$)
          use a old routine CALL XB. |                
                                        |

          Options
          Will always return current version of RXB. As you can see RXB
          actually makes VERSION a valuable routine again.



          VGET           subprogram                            PAGE  V4
          -------------------------------------------------------------
 
          Format         CALL VGET(row,column,length,string-variable
                         [,...])
 
          Description
 
          The VGET subprogram returns into a string-variable from the
          screen at row and column. Length determines how many
          characters to put into the string-variable. Row numbers
          from 1 to 24 and column numbers from 1 to 32. Length may
          number from 1 to 255. If VGET comes to the bottom of the 
          screen then it wraps to the top of screen.
 
          Programs
 
          The program to the right will | >100 CALL VGET(5,9,11,E$)
          get into string-variable E$   |
          the 11 characters at row 5 and|
          column 9.                     |
                                        |
          The program to the right will | >100 CALL VGET(1,3,5,M$,9,3,1
          get into string-variable M$   |  ,Q$,24,1,32,N$)
          the 5 characters at row 1 and |
          column 3, then put into       |
          string-variable Q$ the 1      |
          character at row 9 and column |
          3, then put into              |
          string-variable N$ the 32     |
          characters at row 24 and      |
          column 1.                     |
                                        |

          Options:
          See HPUT, VPUT, and HGET.



          VPUT           subprogram                            PAGE  V5
          -------------------------------------------------------------
 
          Format         CALL VPUT(row,column,string[,...])
 
                         CALL VPUT(row,column,string-variable[,...])
 
          Description
 
          The VPUT subprogram puts a string or string-variable or 
          number or number variable or constant onto the screen at
          row and column. The row numbers from 1 to 24 and
          column numbers from 1 to 32. If the string or number or 
          numeric variable or string-variable or constant being 
          put onto screen goes to an bottom it wraps to the top
          screen just like VCHAR does. VPUT runs from ROM.
 
          Programs
 
          Line 100 puts string "THIS" on| >100 CALL VPUT(10,4,"THIS")
          the screen at row 10 and      |
          column 4.                     |
                                        |
          Line 110 sets string-variable | >110 A$="VPUT"
          A$ equal to string "VPUT"     |
                                        |
          Line 120 puts string "is" at  | >120 CALL VPUT(11,5,"is",10,6
          row 11 and column 5, then puts|  ,A$)
          string-variable A$ at row 10  |
          and column 6.                 |
          Puts 456 at row 10 col 15     | >100 CALL VPUT(10,15,456)             
                                        |

          Options:
          CALL VPUT is now written in Assembly so much faster is
          faster than normal then XB DISPLAY AT(row,column) 
          (But a vertical version.)
          See HCHAR, VCHAR, HPUT, HGET and VGET.



          VPUT           subprogram                            PAGE  V6
          -------------------------------------------------------------
 
          Format         CALL VPUT(row,column,string[,...])
 
                         CALL VPUT(row,column,string-variable[,...])
 
          Description
 
          The VPUT subprogram puts a string or string-variable or 
          number or number variable or constant onto the screen at
          row and column. The row numbers from 1 to 24 and
          column numbers from 1 to 32. If the string or number or 
          numeric variable or string-variable or constant being 
          put onto screen goes to an bottom it wraps to the top
          screen just like VCHAR does. VPUT runs from ROM.
 
          Programs
 
          Line 100 puts string "THIS" on| >100 CALL VPUT(10,4,"THIS")
          the screen at row 10 and      |
          column 4.                     |
                                        |
          Line 110 sets string-variable | >110 A$="VPUT"
          A$ equal to string "VPUT"     |
                                        |
          Line 120 puts string "is" at  | >120 CALL VPUT(11,5,"is",10,6
          row 11 and column 5, then puts|  ,A$)
          string-variable A$ at row 10  |
          and column 6.                 |
          Puts 456 at row 10 col 15     | >100 CALL VPUT(10,15,456)             
                                        |

          Options:
          CALL VPUT is now written in Assembly so much faster is
          faster than normal then XB DISPLAY AT(row,column) 
          (But a vertical version.)
          See HCHAR, VCHAR, HPUT, HGET and VGET.



          XB             Device Service Routine (DSR)          PAGE  X1
          -------------------------------------------------------------
 
          Format         RUN "XB"
 
                         DELETE "XB"
 
                         CALL CAT("XB")
 
                         OLD XB
 
                         SAVE XB         -(Must have a program within
                                         -memory to work at all)
 
                         CALL XB
 
          Description
 
          The XB DSR (Device Service Routine) allows access to the
          RXB title screen. The access will work only if the DSR is
          in the GPLDSR or LINK DSR. In other words, a DSR that
          acknowledges any type of DSR in RAM, ROM, GROM, GRAM,
          or VDP. Most DSR's only accept DSK or PIO. Others like the
          SAVE or LIST commands will only work with a program in the
          memory first. Still others like CALL LOAD("XB") must have the
          CALL INIT command used first.
           From EA option 5 you may type XB then enter, or from EA
          option 3 type XB then enter, then enter again. If the EA
          option 1 (edit), then 4 (print) type XB. From TI BASIC
          use OLD XB or DELETE "XB".
           Keep in mind that if it does not work, the problem is the
          DSR your using. Almost all DSR's today only acknowledge the
          ROM or RAM DSR's. As the XB DSR is in GROM/GRAM it seems a
          bit short sighted on the part of most programmers to use
          cut down versions of a DSR. Please discourage this as it is
          a disservice to us all.



                                                               PAGE   1

        This is a copy of the RXB title screen:
 
 
 
                             
                        
 
 
                               *******************
                               * VERSION =  2022 *
                               *******************
                               *      R X B      *
                               *                 *
                               *     creator     *
                               *                 *
                               * Rich Gilbertson *
                               *******************
 
                        >> press ============= result <<
 
                            ANY KEY = DSK#.LOAD
 
                            ENTER   = DSK#.UTIL1
 
                          (COMMA) , = DSK#.BATCH
 
                          SPACE BAR = RXB COMMAND MODE
 
                          (PERIOD) . = EDITOR ASSEMBLER

           NOTE: 0 (ZERO) defaults to WDS1.LOAD or after pressing

                 ENTER defaults to WDS1.UTIL1 



                                                               PAGE   2             
                                                                           
       This is a explanation of the keys of the MENU screen:
       ----------------------------------------------------------------
       (any key) = DSK#.LOAD
          
        While the screen shows menu RXB is selected pressing 
       any key will be the drive that DSK#.LOAD will be run from.     
       RAMDISK number keys 1 to 9 or the alpha keys A to z.
        Pressing 0 (zero) key will run WDS1.LOAD
         
       ----------------------------------------------------------------
       (ENTER key) = DSK#.UTIL1
          
        While the screen shows menu RXB is selected pressing
       ENTER key allows Assembly Programs to be used. Pressing 
       any key will be the drive that DSK#.UTIL1 will be run from.     
       RAMDISK number keys 1 to 9 or the alpha keys A to z.
        Pressing 0 (zero) key will run WDS1.UTIL1
                   
       --------------------------------------------------------------- 
       (COMMA) , = DSK#.BATCH
          
         While the screen shows menu RXB is selected pressing
       COMMA key runs DSK#.BATCH 
       DSK#.BATCH defaults to DSK1 if BATCH not found will default to 
       command mode. For more information on this feature read USER in 
       the RXB information on BATCH FILE SYSTEM below.

       ----------------------------------------------------------------
       (SPACE BAR) = RXB COMMAND MODE
          
        Pressing the SPACE BAR results in XB command mode.
        (Same as waiting a few seconds just like normal XB does.)

       ----------------------------------------------------------------- 
       (PERIOD) . = EDITOR ASSEMBLER
          
        Pressing the . (PERIOD) key will switch to EDITOR ASSEMBLER
       menu. Pressing the . 

       -----------------------------------------------------------------
       (ZERO) 0 = WSD1.LOAD

         Pressing the 0 (ZERO) key will start a WSD1.LOAD to execute
        from hard drive 1. If the root directory has a LOAD program.



                                                               PAGE    3

       BATCH FILE SYSTEM:
       -----------------------------------------------------------------
       CALL USER overrides the normal edit mode by allowing a DV80 file
       to take control. This allows conversions from DV80 to XB program
       or DV80 to XB MERGE format or loading files, re-sequencing them,
       and saving or merging or adding lines through another DV80 file.
       All variables used through CALL USER are not affected so from a
       running program more lines or variables can be added to the size
       of the program without losing anything. Of course the RUN command
       will as always clear all variables before the program is run,
       this feature can be turned off with a CALL LOAD. (PRESCAN OFF)
        As the USER subprogram can override the Editor many features can
       be bypassed. Example:
                            NEW                       cr
                            OLD DSK1.XBPROGRAM        cr
                            RES 11,3                  cr
                            MERGE "DSK1.MERGEPGM"     cr
                            SIZE                      cr
                            SAVE "DSK1.NEWPROGRAM"    cr
                            RUN                       cr
                            NEW                       cr  
                            OLD DSK1.LOAD             cr  
 
        The above is a good example of a DV80 Batch file for RXB. Note
       that there must be a CHR$(13) or Carriage Return after every input
       line. If not then RXB assumes the it is the same line. But even
       that is not much of a problem as RXB allows 21 lines of input per
       program line. You can make them even longer if you want in USER.



                                                              PAGE    4

       INPUT/OUTPUT ACCESS:
       ----------------------------------------------------------------
       CALL IO controls the 9901 CRU chip. Sound lists can be played
       independently of current status. (i.e. type in a program while
       playing music from VDP/GROM.) Control Register Unit can turn
       on/off single bits of CRU address bus. (i.e. cards/chips)
       Cassette direct bus control. (i.e. no menu input/output, verify)
                                     
       REDO KEY RESTORED (Was removed in RXB2001 to RXB2012):                       
                     
       ----------------------------------------------------------------
        The REDO (FCTN 8) is RESTORED in RXB2015. USER needed a buffer
       that would not be molested or modified by CALL LINK, CALL LOAD
       or routines that need a buffer and usually use the same area
       that USER previously used. So to update and eliminate questions
       of compatibility the USER buffer was installed in place of the
       Edit recall buffer (REDO). The REDO key was not considered to be
       of much use anyway as the Crunch Buffer is 163 tokens long and
       in non-tokenized form the Edit recall buffer is only 152 bytes
       long. That is why when REDO is pressed only part of the line
       last typed in was recalled to screen. Additionally COPY lines,
       and MOVE lines commands can do the same thing as REDO could, so
       not much of anything is lost because it is assumed a TEXT EDITOR
       will be used to create programs in RXB then use CALL USER.
 
       PROGRAM DEVICE NAMES ACCESS:
       ----------------------------------------------------------------
       New access names established as devices are now available. By
       using any TRUE DSR (Device Service Routine) you may now access
       the Editor Assembler main menu by typing 'EA' within Basic or
       RXB. Example:  RUN "EA" or OLD EA or DELETE "EA"
       You may also access RXB from Editor Assembler or Basic or even
       another cartridge. Example: OLD XB or DELETE "XB" from Basic.
       At any Editor Assembler device prompt type 'XB' then enter.
 
       FOR ASSEMBLY LANGUAGE PROGRAMMERS:
       -----------------------------------------------------------------
       CALL MOVES is a new command that is a GPL command converted and
       added to RXB to give total control over every type of memory with
       in the TI-99/4A. MOVES works with address or strings to copy,
       over-write or move blocks of memory of any type of memory. RAM,
       VDP, GROM, GRAM, and ROM can be accessed by CALL MOVES.



                                                              PAGE    5

       RXB TO ASSEMBLY DIRECT ACCESS BY ADDRESS:
       ----------------------------------------------------------------
        EXECUTE is much faster than the traditional LINK routine built
       into XB. The main problem with LINK is it checks everything and
       pushes everything onto the VDP stack. After getting to Assembly
       it pops everything off the stack for use or pushes what is to
       be passed to XB onto the stack. EXECUTE on the other hand just
       passes a address to a 12 byte Assembly program in Fast RAM and
       RTWP ends the users program. A LINK will use up 6 bytes for the
       name, 2 bytes for the address and wastes time checking things.
        The advantage to EXECUTE is you use LOAD or MOVE or MOVES to
       place the values needed directly into the registers then do it.
       EXECUTE uses less space, is faster, and is easy to debug. 

       SAMS SUPPORT ROUTINES:
       ----------------------------------------------------------------
        The SAMS has support routines built into RXB. CALL SAMS("MAP")
       will turn the SAMS mapper on. CALL AMS("PASS") turns SAMS mapper
       to pass mode. CALL SAMS("ON") will turn on the read/write
       lines of the mapper. CALL SAMS("OFF") turns off the read/write
       lines. With these commands pages of memory can be written with
       a CALL LOAD or read with a CALL PEEK. 
        RXB AMS SUPPORT USES NO ASSEMBLY OR CALL LINKs. That means up 
       to 1 meg of 4K pages in entire 32K from RXB. That is impossible 
       to do from XB as you have to load your normal support somewhere 
       in 32K of assembly for everyone else not using RXB.
        GPL is where all the support routines are stored in RXB so not
       one byte is wasted on assembly support. That also means not one
       byte of SAMS memory in wasted on control routines.
        Speaking of control CALL SAMS switches 4K pages in the 32K SAMS.
       CALL SAMS uses boundry symbols upper case only.   
       i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
       D = >D000, E = >E000 and F = >F000 

       RND FUNCTION REPLACED
       -----------------------------------------------------------------
       Extended Basic RND has been replaced with the TI BASIC RND as the
       normal XB version of RND was hindered by to much Floating Point
       that is very slow for use just to get a random number. Also the
       XB RND was insanely complicated and bloated.



                                                                PAGE 6

       INTERRUPT SERVICE ROUTINE CONTROL (ISROFF and ISRON)
       ----------------------------------------------------------------
       ISR (Interrupt Service Routine) like MOUSE or Screen dumps or any
       special program like XB Packer use a ISR. The problem with these
       programs is unless they are written to work with new devices, a
       lock-up occurs. EXAMPLE: running a mouse routine and XB Packer.
       They were never made to work together. RXB now has a handle on
       this. CALL ISROFF turns off the interrupt and saves the address
       for turning it back on. CALL ISRON restarts the interrupt. As
       several pages of the AMS can be used with interrupts a whole
       new world of programming is now possible.
       NO ASSEMBLY IS USED OR CALL LINKs. Absolute compatibility.
 
       4K PROGRAM IMAGE FILE LOADER AND SAVER (PLOAD and PSAVE)
       ----------------------------------------------------------------
       Hidden loaders were created to overcome the slow loading speed
       of CALL LOAD. The disadvantage of a hidden loader is it can only
       load one assembly support program at a time. PLOAD loads program
       image files of 4K, and PLOAD can load as many times as needed
       within one RXB program. PSAVE is the opposite and creates the 
       program image files of the 4K anywhere in memory. Lastly loading
       200K into the SAMS card is easy with PLOAD. A simple loop can 
       load each SAMS 4K page with PLOAD. Each address boundry is in
       PSAVE or PLOAD like SAMS uses boundry symbols upper case only.
       i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
       D = >D000, E = >E000 and F = >F000 
      
       SAVE FILES IN INTERNAL VARIABLE 254 OR PROGRAM IMAGE FORMAT
       ----------------------------------------------------------------
       RXB allows XB programs to load or be saved in two formats as
       previously, but now RXB allows more control of this feature.
       Normally XB will save files in Program Image format if these
       programs are small enough to fit in VDP memory. If these XB
       programs are larger then what will fit in VDP then XB programs
       will be saved in Internal Variable 254 format. RXB has a added
       feature added to save command. IV254 is the new feature. 
       EXAMPLE: SAVE DSK3.TEST,IV254



                                                                PAGE  7

       JOYSTICK and SPRITE MOTION CONTROL with KEY built FIRE button
       ----------------------------------------------------------------
       As normal XB JOYSTICK and SPRITE controls were seperate commands
       this slowed down response in XB games and utilities. The main 
       issue was these commands were not combined. RXB added two new
       commands to the arsenal but also added CALL KEY and also added
       a IF THEN into the mix. Thus CALL JOYMOTION acts just like
       CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number
       To bring even more to the table is an INDEX value for SPRITES.
       EXAMPLE:
       CALL JOYMOTION(key-unit,x-return,y-return,#sprite,
       row-index,column-index,key-return-variable) GOTO line-number

       key-unit,x-return,y-return are like normal XB JOYST
       #sprite,row-index,column-index are like XB MOTION but dot based
       key-return-variable is just like XB KEY key varible
       GOTO line-number is like XB IF KEY THEN line-number

       The GOTO is not required nor is the key-return-variable as these 
       are optional depending on your needs.

       JOYSTICK and SPRITE LOCATE CONTROL with KEY built in FIRE button
       ----------------------------------------------------------------
       As normal XB JOYSTICK and SPRITE controls were seperate commands
       this slowed down response in XB games and utilities. The main 
       issue was these commands were not combined. RXB added two new
       commands to the arsenal but also added CALL KEY and also added
       a IF THEN into the mix. Thus CALL JOYLOCATE acts just like
       CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number 
       EXAMPLE:
       CALL JOYLOCATE(key-unit,x-return,y-return,row-index,column-index,
       #sprite,dot-row,dot-column),key-return-variable) GOTO line-number

       key-unit,x-return,y-return are like normal XB JOYST
       #sprite,row-index,column-index are like XB LOCATE but dot based
       key-return-variable is just like XB KEY key varible
       GOTO line-number is like XB IF KEY THEN line-number

       The GOTO is not required nor is the key-return-variable as these 
       are optional depending on your needs.



                                                                PAGE  8

       RAM MEMORY MANAGER (CALL PRAM)
       ----------------------------------------------------------------
       New way to use RXB way ahead of any other XB made is PRAM that 
       allows you to change the size of RAM in upper 24K of RAM. 
       Normally >A040 is the end of RAM in XB as it starts going from 
       high RAM >FFFC down to lowest toward >A040 this allows 64 bytes
       not used but was for the TI Debugger to use.
       The PRAM command changes the location of the end of XB RAM.
       Normally XB RAM is >A040 in hex so the PRAM command allows 
       changing this location to as low as 298 bytes of XB RAM.
       Any location from >A000 to >FEBE is a valid change in PRAM.
       Thus -322 decimal or >FEBE hex is highest address is -25576
       decimal or >A000 hex lowest address. That tops our XB RAM to 
       64 more bytes then normal at max or down to 298 bytes of RAM.
       How come no one else thought of this? (Need to fix program start)

       VDP STACK MEMORY MANAGER (CALL VDPSTACK)
       ----------------------------------------------------------------
       Normal VDP stack location is 2392 in decimal >0958 in Hex.
       Some XB programs like The Missing Link use 6176 or >1820 Hex.
       Another location would be like 4096 which is >1000 in Hex.
       The VDPSTACK subprogram allows change of location of the VDP 
       STACK in VDP RAM. Care must be taken to where you place the
       stack after all any over write or change can crash XB.
       Changing the VDP stack location allows changes in type of VDP
       mode being used like TEXT mode or Multi colored mode.

       FILES BUFFEER MEMORY MANAGER (CALL FILES)
       ----------------------------------------------------------------
       The FILES subprogram differs from the Disk Controller FILES on
       the CorComp, TI, Myarc or Parcom versions. All of these require
       a NEW after CALL FILES. NEW is executed after the FILES 
       subprogram in RXB, no need to use NEW it is built into FILES.
       Also RXB FILES accepts values from 0 to 15 unlike the other 
       FILES routines that can only accept 1 to 9. Each open file
       reduces VDP by 534 bytes, plus each file opened will use 518 
       bytes more. CALL FILES(0) will display 5624 Bytes of Stack free
       and 24488 Bytes of Program space free. At this point up to 15 
       files may be open at the same time. Not recommended but possible.
       Thus RXB  0 files now is possible in RXB or up to 15.



                                                                PAGE  9

       SIZE REPORT CHANGE
       ----------------------------------------------------------------
       RXB has a major change to SIZE routine not just adding CALL SIZE
       but the report itself is extensivily more useful.
       >SIZE press enter
       Screen advances and you see:

         >SIZE
         11840 Bytes of Stack Free
         24488 Bytes of Program Free
         8192 Bytes of Assembly Free
         256  Pages 1024 K SAMS
         2    Page = Address >2000
         3    Page = Address >3000
         10   Page = Address >A000
         11   Page = Address >B000
         12   Page = Address >C000
         13   Page = Address >D000
         14   Page = Address >E000
         15   Page = Address >F000
         >37D7 VDP Free Address 
         >0958 VDP STACK Address
         >FFE7 Program Free Address
         >A040 Program End Address  
         >2000 RAM Free Address
         >4000 RAM End Address

         >cursor flashing

       As you can see much more information then you are used to
       seeing about memory of XB and system. Note first off the 
       display of Assembly Free memory and if you have a SAMS.
       If you have a SAMS you also see the pages used and at the
       address in Hex where it resides. Next is address of first
       free VDP Address and below that you VDP Stack location. 
       For XB itself you also see the XB program first free 
       address and the End Address for XB program space. Lastly 
       the first free RAM in Assembly lower 8k and last address
       used by Assembly.



                                                                PAGE 10

       RXB FIXES TO XB REQUESTED BY USERS
       ----------------------------------------------------------------
        RXB has numerous fixes thru the years a few will be mentioned
       here as far back as 1983 when I bought my TI99/4A.
        Recently asked to fix RANDOMIZE SEED not working with the 
       CALL LINK in XB, so I added a line to reset RANDOM SEED upon
       use of the CALL LINK. Your welcome.
        RXB and XB had a issue with PRINT that worked fine in BASIC 
       and a fix was made to solve this very rare issue. You might 
       have seen it when edge characters were improperly shown.
        CALL FILES(0) never worked in BASIC or XB but does work in
       RXB now. This meant a update to SIZE routine too.
        Another XB bug was this example:
       10 PRINT 
       LIST
       ACCEPT A
        Now a error is produced unlike version 110 XB crashes. 
       RXB shows this instead * Only legal in a program *

       THANKS TO LEE STEWART 
       ----------------------------------------------------------------
       RXB 2022 has muliple routines now in Assembly to speed up these
       routines ALPHALOCK, CLEAR, CLEARPRINT, CHARSET, COLLIDE, INIT, 
       HCHAR, HEX, ISROFF, ISRON, VCHAR, HPUT, HGET, ROLLDOWN, 
       ROLLLEFT, ROLLDOWN, ROLLUP, SCROLLDOWN, SCROLLLEFT, SCROLLRIGHT,
       SCROLLUP, VPUT, VGET and the character loader all are Assembly 
       in ROM. Expect next version of RXB to have even more Assembly 
       for former GPL routines thanks to help from Lee Stewart. 
       Specifically CLEAR, HPUT, VPUT, HCHAR, VCHAR, SCROLL, ROLL and
       CLEARPRINT are all speedy due to be Assembly now instead of GPL.
       



          CALL           subprogram list of format modified    PAGE  11
          -------------------------------------------------------------

          CALL CHAR(ALL,pattern-identifier[,...])

          CALL CHARSET(ALL)

          CALL COLOR(ALL,foreground-color,background-color[,...])
 
          CALL DISTANCE(#sprite,#sprite,numeric-variable[,...])
 
          CALL FILES(number) {0 to 15 can be used now}
 
          CALL GCHAR(row,column,numeric-variable[,...])

          CALL HCHAR(row,column,character-code,repetition[,...])
 
          CALL JOYST(key-unit,x-return,y-return[,...])
 
          CALL KEY(key-unit,return-variable,status-variable[,...])
          CALL KEY(string,key-unit,return-variable,status-variable[,...])

          CALL MAGNIFY(magnification-factor[,...])
 
          CALL MOTION(ALL,row-velocity,column-velocity[,...])
          CALL MOTION(GO[,...])
          CALL MOTION(STOP[,...])

          CALL SCREEN(color[,...])
          CALL SCREEN(ON[,...])
          CALL SCREEN(OFF[,...])
  
 
          CALL VCHAR(row,column,character-code,repetition[,...])
 











                                                                                PAGE REA1

                          *************************************************************** 
                          *              RXB Editor Assembler Version 2015              * 
                          ***************************************************************
 
                           REA is a new completely re-written Editor Assembler module. 
                         Any code not needed was removed, and this left room for many 
                         new features. TI BASIC support has been removed to add in the 
                         features like catalog a drive and set pathnames.

                         This is a copy of the REA title screen:

                                       Rich Editor & Assembler V=2015 
                                       --------------------------------

                                            S   SET PATHS NAMES 

                                            D   DIRECTORY

                                            A   ASSEMBLER 

                                            E   EDITOR 

                                            X   XB PROGRAM 

                                            L   LOAD and RUN 

                                            P   PROGRAM FILE 

                                            .   R X B



                                                                              PAGE REA2

                      This is a copy of the REA Configure Paths:

                                         * CONFIGURE PATHS *
   
                                    1  DSK1.EDIT1

                                    2  DSK1.ASSM1

                                    3  DSK1.SOURCE

                                    4  DSK1.OBJECT

                                    5  DSK1.LIST

                                    6  OPTIONS: L
                                    
                                                                   
                                       CTRL 1 - 5 DRIVE SELECTION

                                       ANY OTHER KEY TO MAIN MENU

                                     



                                                                              PAGE REA3

                      S SET PATH NAMES
                      Sets path of Editor, Assembler,source, object, and list files.
                      Selection of 1 to 6 allows a input like as in previous Editor
                      Assembler version including REA. Selection of CTRL 1 to 5 will
                      allow single selection of drive number for that path. As an
                      example is select CTRL 1 and the number 1 in path DSK1.EDIT1 
                      will beep and ask for a drive number or letter. Another beep
                      indicates selection made and shows the change.
                                
                      E EDITOR
                      Has a arrow to indicate which option has been selected, thus
                      the user will no longer make a mistake of saving a blank file
                      over the original that he actually meant to load or save. Also
                      as Edit path is preset the loading is automatic for the Editor
                      and the file to load. Save file still asks for a path name and
                      file. Print also asks for device or path name. 
                      i.e. DSK.VOLUMENAME.EDIT1 or WDS1.DIRECTORY.SUBDIRECTORY.EDIT1
                       The directory will load the selected file if this option is
                      used. See Directory for features.
                    
                      A ASSEMBLER
                      Assembler has no menu selection as CONFIGURE PATHS does this.
                      The ASSM1 path from S SET PATH automatically loads Source,
                      Object, List file paths and Options. A Assember key press from
                      main menu starts the Assembler, but SET PATH must be first.
                      i.e. DSK.VOLUMENAME.ASSM1 or WDS1.DIRECTORY.SUBDIRECTORY.ASSM1
                       The directory will replace the selected file if this option
                      is used. See Directory for features.

                      L LOAD and RUN
                      The directory will load the selected file if this option is
                      used. After loading a file all the link names will be displayed
                      inclucding all support routines. Using arrow keys the selected
                      link name can be executed by pressing ENTER key. Up to 80 link
                      names will be displayed on screen thus arrow keys to select a
                      program name to run. See Directory for features.

                      P PROGRAM FILE
                      By pressing a single key then enter, DSK#.UTIL1 is displayed
                      and executed. # indicates the key pressed A to Z or 1 to 9.
                      Pressing 0 (zero) runs WDS1.UTIL1 at PROGRAM FILE. The directory
                      will load the selected file if this option is used. The lower 8K
                      support routines normally only loaded by the EA3 option are now
                      loaded by this option too. So users can load FORTH, FORTRAM, and
                      C programs from the EA5 prompt.

                      X XB PROGRAM
                      New feature that prompts for a XB program file to run. If the
                      file or device errors out, then a return to RXB command mode is
                      done. The * R X B * and a flashing cursor indicates the XB
                      command mode. By pressing a single key then enter, DSK#.LOAD is
                      displayed and executed. # indicates the key pressed. The
                      directory will load the selected file if this option is used.
                      See Directory for new features.

 



                                                                            PAGE REA4
                     
                      D DIRECTORY
                      A new feature that prompts for a device name. EXAMPLE: DSK1.
                      The period MUST be included if the full device name is used.
                      Or type in a path name EXAMPLE: WDS1.DIRECTORY. The quicker way
                      is to just type a number or letter then enter. Thus DSK#. is
                      used and the key pressed represents the # used. While the
                      catalog is being scrolled on screen, ANY KEY will pause the
                      display and reading of a disk, an arrow will appear next to the
                      file read and the ARROW KEYS will move the arrow up or down.
                      (FCNT/CTRL optional). To page forward or backward a screen at
                      a time press left and right arrow keys. The arrow last pointing
                      to will stay at the top or bottom of the screen display. This
                      in much better than other paging methods like DM1000 or Funnel
                      Web Disk review to see single lines.
 
                      ONLY the SPACE BAR will pause the catalog until pressed again.

                      2015 added new keys to Directory: 1 = Editor.
                                                   A or a = Assembler file.
                                                   G or g = GPL Assembler file.

                      Use ENTER to select the filename so it will be placed into into
                      a buffer, the cataloger will auto-load Dis/Fix 80 files into
                      the EA3 menu, Programs will be EA5, and only Dis/Var 254 is
                      considered to be XB programs. So to load XB programs use the
                      SPACE BAR to buffer the filename, thus loading is automatic
                      from there for XB programs. For DIS/VAR 80 or DIS/FIX 80 files
                      to be edited or assembled use ENTER or SPACE BAR, then select
                      the Edit or Assembler from the main menu. Loading is automatic
                      from there.

                      Directory will automatically assume you wish to catalog a
                      sub-directory if a Directory was selected. To buffer anything
                      else you must use the SPACE BAR, to select a filename to be
                      placed into a buffer, then auto return to REA main menu. Now
                      select the option to be used from this buffer.

                      If you select D DIRECTORY again, the buffer will be used and the
                      last device accessed will be used again. If you wish to clear
                      the buffer just use FCTN BACK to the REA main menu.

                      NOTE:
                      SOURCE file name must be filled in as this is the default. But
                      if you use DIRECTORY to flag a file it will be placed into
                      S SET PATH NAMES for all uses.

                      . R X B
                      A previous feature that was optional since version 1000 but had
                      no menu option on screen indicating it was a option. (Period) .
                      will return to RXB menu screen.



                                                                            PAGE REA5

                      SYSTEM SUPPORT

                      The modified version of the Editor/Assembler no longer supports
                      the 99/4 computer. A 99/4A is required. All TI BASIC support
                      routines (CALL INIT, CALL LINK, CALL LOAD,CALL PEEK, CALL PEEKV,
                      CALL POKEV, and CALL CHARPAT) have been removed from the
                      Editor/Assembler. If you have a program that must be run from
                      TI BASIC and requires these routines, you must plug an
                      Editor/Assembler module into the cartridge connector.
                      There are some assembly language programs that access data
                      internal to the Editor/Assembler cartridge. These programs
                      will not run correctly due to the re-structuring of the data
                      in the Editor/Assembler module. For these programs you must
                      use your Editor/Assembler cartridge. On the other hand like
                      FunnelWeb REA loads the support routines before EA3 or EA5
                      loaders to engage, so C, FORTRAM, and FORTH will load from
                      the EA5 prompt.

                      NO 32K NEEDED TO WHAT?
                      REA has been totally re-written so the user can now use some
                      of the features of REA without that nasty *NO MEMORY EXPANSION*
                      error turning up. The error routine only disallows the user
                      from accessing those aspects of REA that absolutely needs 32K
                      to work. The user may now use the REA EDITOR PRINT FILE menu,
                      or use the x R X B file loader menu, or use D DIRECTORY menu.
                      That means with RXB and REA the user can now print files, view
                      files, load any BASIC or XB program and catalog from REA with
                      or without a 32K memory.

                      EASTER EGGS
                      When on main menu of REA 2015 using keys 1 will still go to
                      the Editor, 2 will still go to Assembler, 3 will still go to
                      the Load and Run, and 5 will still go to RUN PROGRAM FILE.
                      There are more to look for.


