RXB

RICH EXTENDED BASIC

>k %k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k >k 5k 5k 5k >k %k >k 5k 5k 5k %k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k >k 5k >k >k >k %k >k >k >k %k k ok

* TABLE OF CONTENTS *
sk e sk ok s sk st ok ok e sk ok sk sk sk ok ok sk sk ok sk sk sk ok ook sk sk sk ok ok sk sk sk sk ok s sk ok sk sk ok sk sk sk oksk ok sk ok ok ok ok
NAME----------mmmm e oo TYPE---------- ACCESS--------- PAGE - ##
ALL OPTION SUBPROGRAM Al
ALPHALOCK SUBPROGRAM JOYSTICK/KEYBOARD A2
BASIC DSR or SUBPROGRAM DEVICE B1
BEEP SUBPROGRAM SOUND B2
BIAS SUBPROGRAM CONVERSION B3
BYE SUBPROGRAM/COMMAND EXIT RXB B4
CAT SUBPROGRAM DISK or HARD DRIVE C1
CHAR SUBPROGRAM SCREEN c2
CHARSETALL SUBPROGRAM SCREEN c3
CLEARPRINT SUBPROGRAM SCREEN c4
CLSALL SUBPROGRAM DISK c5
COINC SUBPROGRAM SPRITE cé6
COLOR SUBPROGRAM SPRITE c7
COPY COMMAND EDITOR LINES c8
DEL COMMAND EDITOR LINES D1
DIR SUBPROGRAM DISK or HARD DRIVE D4
DISTANCE SUBPROGRAM SPRITE D6
EA DSR DEVICE El
EXE SUBPROGRAM ASSEMBLY SUPPORT E3
EXECUTE SUBPROGRAM ASSEMBLY SUPPORT E4
FILES SUBPROGRAM DISK F1
GCHAR SUBPROGRAM SCREEN Gl
GO OPTION SUBPROGRAM SPRITE G2
GMOTION SUBPROGRAM SPRITE G3
HCHAR SUBPROGRAM SCREEN H1
HEX SUBPROGRAM CONVERSION H2
HGET SUBPROGRAM SCREEN H4
HONK SUBPROGRAM SOUND H5
HPUT SUBPROGRAM SCREEN H6
INIT SUBPROGRAM ASSEMBLY SUPPORT I1
INVERSE SUBPROGRAM CHARACTER I2
IO SUBPROGRAM TSM9901 CONTROL I3
ISROFF SUBPROGRAM INTERUPTS I13
ISRON SUBPROGRAM INTERUPTS I14
IV254 OPTION SUBPROGRAM DISK I15

>k %k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k >k 5k 5k 5k >k %k >k 5k 5k 5k %k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k >k 5k >k >k >k %k >k >k >k %k k ok

*

TABLE OF CONTENTS

*

>k 3k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k %k 5k 5k 5k >k %k >k 5k 5k 5k 5k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k %k 5k >k >k >k %k >k >k >k %k k ok

JOYLOCATE
JOYMOTION
KEY

LIST

LOAD
MAGNIFY
MAP (SAMS)
MERGE

MOD

MOTION

MOVE

MOVES

NEW

OFF (SAMS)
ON (SAMS)
ONKEY

PASS (SAMS)
PATTERN
PEEKG
PEEKV
PLOAD

POKEG

POKER
POKEV

PRAM

PSAVE
QUITOFF
QUITON

SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
COMMAND

SUBPROGRAM
SUBPROGRAM

OPTION SUBPROGRAM

COMMAND
SUBPROGRAM
SUBPROGRAM
COMMAND
SUBPROGRAM

SUBPROGRAM or COMMAND
OPTION SUBPROGRAM
OPTION SUBPROGRAM

SUBPROGRAM

OPTION SUBPROGRAM

SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM

JOYSTICKS

JOYSTICK & SPRITES
JOYSTICK & SPRITES

KEYBOARD

SCREEN/DSK/PRINTER
DISK/ASSEMBLY

SPRITE

SAMS MEMORY
DISK/FILES

CONVERSION

SPRITE

EDIT LINES

MEMORY (ALL TYPES)

MEMORY (XB)
SAMS MEMORY
SAMS MEMORY
KEYBOARD

SAMS MEMORY

SPRITE/CHARACTER

GROM
VDP

DISK or HARD DRIVE

GRAM

VDP REGISTERS

VDP
RAM MEMORY

DISK or HARD DRIVE

KEYBOARD
KEYBOARD

PAGE - #

J1
32
33
K1
L1
L2
M1
M2
M3
M4
M5
M6
M7
N1
01
02
03
P1
P2
P3
P4
P5
P7
P8
P9
P10
P11
Q1
Q2

>k %k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k >k 5k 5k 5k >k %k >k 5k 5k 5k %k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k >k 5k >k >k >k %k >k >k >k %k k ok

*

TABLE OF CONTENTS

*

>k 3k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k %k 5k 5k 5k >k %k >k 5k 5k 5k 5k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k %k 5k >k >k >k %k >k >k >k %k k ok

RANDOMIZE
RES
RMOTION
RND
ROLLDOWN
ROLLLEFT
ROLLRIGHT
ROLLUP
SAMS

SAVE
SCREEN
SCROLLDOWN
SCROLLLEFT
SCROLLRIGHT
SCROLLUP
SIZE

STOP
SWAPCHAR
SWAPCOLOR
USER

VAL

VCHAR
VDPSTACK
VERSION
VGET

VPUT

XB

SUBPROGRAM
COMMAND
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SAMS CONTROL
COMMAND
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM

SUBPROGRAM/COMMAND
OPTION SUBPROGRAM

SUBPROGRAM
SUBPROGRAM
SUBPROGRAM

OPTION SUBPROGRAM

SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM
SUBPROGRAM

DSR or SUBPROGRAM

EDIT LINES
SPRITE
CONVERSION
SCREEN
SCREEN
SCREEN
SCREEN

SAMS MEMORY

DISK or HARD DRIVE

SCREEN
SCREEN
SCREEN
SCREEN
SCREEN
MEMORY (ALL)
SPRITES
CHAR

COLOR

CONTROL/DISK DOS

CONVERSION
SCREEN

VDP STACK LOCATION

GROM RXB
SCREEN
SCREEN
DEVICE

PAGE - ##
INITIALIZE SEED

R1
R2
R3
R4
R5
R6
R7
R8
S1
S5
S6
S7
S8
S9
S10
S11
S13
S14
S15
ul
V1
V2

V4
V5
V6
X1

>k %k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k >k 5k 5k 5k >k %k >k 5k 5k 5k %k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k >k 5k >k >k >k %k >k >k >k %k k ok

* TABLE OF CONTENTS

*

>k 3k 5k ok 3k >k >k ok 5k >k >k >k 5k 5k 5k >k %k 5k 5k 5k >k %k >k 5k 5k 5k 5k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k 5k >k >k >k %k 5k >k >k >k %k >k >k >k %k k ok

TITLE SCREEN of RXB (explanations) PAGE 1
SPECIAL FEATURES OF RXB PAGE 2
BATCH FILE SYSTEM PAGE 3
INPUT/OUTPUT, REDO KEY, ACCESS DEVICE, ASSEMBLY PAGE 4
EXECUTE ASSEMBLY, SAMS SUPPORT, RND COMMAND FUNCTION PAGE 5
INTERUPT SERVICE ROUTINE, 4K LOADER/SAVER, SAVE IV254 PAGE 6
JOYMOTION and JOYLOCATE PAGE 7
PRAM the XB RAM MANAGER, VDP STACK MANAGER, FILES PAGE 8
SIZE command change and explaination PAGE 9
RXB FIXES TO XB REQUESTED BY USERS PAGE 10
CALL subprogram list of format modified commands PAGE 11

Pictures of screens PAGE 12

ALL option for subprogram PAGE Al

Format CALL CHAR(I,ALL[,...])
CALL CHARSET(ALL)
CALL COINC(ALL,numeric-variable[,...])

CALL COLOR(ALL,foreground-color,background-color
[,---1)

CALL INVERSE(ALL[,...])

CALL MOTION(ALL,row-velocity,column-velocity
[, 1)

CALL RMOTION(ALL,[,...])
Description
The ALL command is used as a option in many subprograms.
Each option by ALL is slightly different so find the above
subprogram to find that use of the ALL option.

Programs

See each subprogram for examples of use of ALL.

ALPHALOCK option for subprogram PAGE A2

Format CALL ALPHALOCK(numeric-variable)

Description

The ALPHALOCK detects if the key ALPHALOCK key is on or off.
If the ALPHALOCK key is off the numeric-variable will be 0.
But if the ALPHALOCK key is on numeric-variable will be non
zero i.e. -26294 just for giggles that is hex >994A

Programs

Check ALPHALOCK key on/off | >100 CALL ALPHALOCK(N)
Show the value of N | >110 PRINT N
If N not zero then HONK | >120 IF N THEN CALL HONK
Loop forever | >130 GOTO 100

|

BASIC Device Service Routine (DSR) PAGE B1

Format RUN "BASIC"
DELETE "BASIC"
CALL XB("BASIC")
CALL CAT("BASIC")
OLD BASIC

CALL BASIC

Description

The BASIC DSR (Device Service Routine) allows access to

the TI BASIC . The access will work only if the DSR is the
GPLDSR or LINK DSR. In other words, a DSR that acknowledges
any type of DSR in RAM, ROM, GROM, GRAM, or VDP. Most DSR's
only accept DSK or PIO. Others like the SAVE or LIST commands
will only work with a program in the memory first. Still
others like CALL LOAD("EA") must have the CALL INIT command
used first.

Keep in mind that if it does not work, the problem is the
DSR your using. Almost all DSR's today only acknowledge the
ROM or RAM DSR's. As the BASIC DSR is in GROM/GRAM it seems
a bit short sighted on the part of most programmers to use
cut down versions of a DSR. Please discourage this practice
as it is a disservice to us all.

Programs

Will go to BASIC prompt
This line asks for a string.
If string A$="BASIC" will go

| >100 CALL XB("BASIC")

|

|
will switch to BASIC. |

|

|

>100 INPUT A$
>110 DELETE A$

>CALL BASIC
>CALL EA("basic")

Will switch to BASIC.
Lower case also works!

BEEP subprogram PAGE B2

Format CALL BEEP

Description

The BEEP command produces the same sound as the ACCEPT or
INPUT, or BEEP as in DISPLAY options.
See EXTENDED BASIC MANUAL pages 47, 48, 49, 77, 78.

Programs
The program to the right will | >100 CALL BEEP
will produce a beep sound. |

I

|

Show request.
Key press request.

>110 PRINT "YNyn ?"
>120 CALL KEY("YNyn",0,K,S)

The above program will BEEP then wait for a key and only
accept Y Ny n from CALL KEY into K.

BIAS subprogram PAGE B3

Format CALL BIAS(numeric-variable,string-variable

e D)

Description

The BIAS command adds 96 to all characters in the string or
subtracts 96 from all characters in the string. If numeric
variable is @ then it subtracts the XB screen bias of 96
from the characters, if the numeric variable is not @ then
it adds the XB screen bias of 96 to all the characters in
the string. ONLY A STRING VARIABLE IS ALLOWED FOR BIAS.

The XB screen bias only affects characters read or written
to the screen. See PEEKV, POKEV and MOVES.

Programs

The program to the right will
load X$ with 255 characters
off the screen. But will not
be readable due to a bias.
The bias is now subtracted >110 CALL BIAS(9,X$)

| >10@ CALL MOVES("v$",b255,511

|

|

|

|
from the string printed. | >120 PRINT X$

|

|

|

|

|

|

»X$)

>100 Y$="This is a test!"
>110 CALL BIAS(l,Y$)

>120 CALL MOVES("$v",15,Y$,
96)

Set up a string to use
Remove add BIAS to string
Put the string onto screen

The above program copies 255 bytes from screen address 511
(511=15 rows plus 31 columns) into string X$. Then BIAS
removes 96 from each byte in string X$. Finally X$ is
shown on screen by PRINT X$

BYE command or subprogram PAGE B4

Format BYE

CALL BYE
Description
The BYE command is the same as the BYE command in the
EXTENDED BASIC MANUAL page 54. The BYE command ends the
program and returns the system to a reset. BYE will close
all open files before exiting to a reset.

Command

May only be used from command | >BYE
mode.

Programs

May only be used in program >100 CALL BYE

mode.

on, if not the loop forever. >120 IF A$<>"Y" THEN 110

|
I
|
The INPUT asks for a Y to go | >110 INPUT "END PROGRAM":A$
|
Must be a Y so reset system. | >130 CALL BYE

|

subprogram

Format CALL
CALL
CALL
CALL
CALL
CALL
CALL

Description

CAT("#"[, ..

CAT(number[, ..

-1
CAT("DSK#."[,...])
CAT("DSK.DISKNAME."[,...])

CAT(string-variable[,...])

-1)

CAT(numeric-variable[,...])

CAT(ASC II value[,...])

The CAT command catalogs the disk drive indicated by the
which can be 1 to z or by path name. The path name may be
up to 30 characters long. A numeric variable or number can
be used for drives 1 to 9 or if higher then it is assumed

that the numeric-variable or number is a ASCII value between
30 to 255. This allows a catalog of a RAM-DISK designated by
letters or control characters. Also CAT can catalog up to 32
drives in one command. The SPACE BAR will pause the catalog

routine, then when the pressed again continues the catalog
listing. ANY OTHER KEY WILL ABORT THE CATALOG.

Programs

This line has pathname in A$ |
This line uses A$ for the name]|
of the device to catalog. |
This line will catalog drive 4|
if N=4 |
This line will catalog drive C|
if X=67 (ASCII 67 is C) |
This line is path name. |
This line will catalog device |
WDS1 for directory VOLUME and|
catalog SUB-DIR |
This line catalogs drives 1 |
then 2 then 3 then WDS11 |

>100 A$="DSK.ADISKNAME"
>110 CALL CAT(A$)

>100 CALL CAT(N)
>100 CALL CAT(X)
>10 V$="WDS1.VOLUME.SUB-DIR."

>20 CALL CAT(V$)

>100 CALL CAT(1,2,3,"WDS1.")

CHAR subprogram PAGE (2

Format CALL CHAR(character-code,pattern-identifier
[,.-.1)

CALL CHAR(ALL,pattern-identifier[,...])
Description

See EXTENDED BASIC MANUAL page 56 for more data. Addition
characters 30 to 159 by redefined, but this affects sprites.
Now 30 (CURSOR) and 31 (EDGE CHARACTER) to be redefined.
Also 144 to 159 may be redefined if sprites are not used.
Pattern-identifier increased from 64 to 240 string. Thus up
to 15 characters may be defined in single command, 4 was old
limit in XB allowed to be defined in XB manaual page 56

Programs

This line will define all the | >100 CALL CHAR(ALL,"")
characters as a empty string. |
FOR NEXT loop 30 to 127 | >110 FOR X=30 to 127
This line prints a character. | >120 PRINT CHR$(X);
NEXT to continue loop. | >13@ NEXT X
Reset characters 32 to 127 | >140 CALL CHARSET(ALL)
I

This line repeats the program.| >150 GOTO 100

I
Sets variable A$ up. | >100 A$="FF818181818181FF"
Define all the characters same| >110 CALL CHAR(ALL,A$)
|

This line defines the cursor. | >120 CALL CHAR(30,"FF81FF")
This line defines the edge | >130 CALL CHAR(31,"55")
character. |

|

Options
Sprites may not be used if characters 144 to 159 are being
redefined for use. 15 characters now defined up from 4 in XB.

CHARSETALL subprogram PAGE (3

Format CALL CHARSET(ALL)
Description

The CHARSETALL command is just like the CHARSET command, but
it resets characters from 30 to 127. CHARSET thus resets 32 to
characters to 95 only. Exactly like CHARSET it also resets
colors to original mode. CALL CHARSET(ALL) resets all the
characters from 30 to 159 and all colors to original.

Programs

This resets all characters and
colors to original.

Set up a loop.

Show characters on screen.

Set all colors the same.

Set each character definition.

Continue loop.

Press any key.

Reset all characters.

Restart it.

>100 CALL CHARSET(ALL)

>100 FOR X=30 to 127

5110 PRINT CHR$(X);

>120 CALL COLOR(ALL,14,10)
>130 CALL CHAR(X,"FFOOFFOOFF")
>140 NEXT X :: CALL BEEP

>150 CALL KEY("",5,K,S)

>160 CALL CHARSET(ALL)

>170 GOTO 100

CLEARPRINT subprogram PAGE (4

Format CALL CLEARPRINT
Description

The CLEARPRINT command is just like the CLEAR command, but
it clears columns 3 to 28 that is the PRINT or DISPLAY area
leaving columns 1 and 2 along with columns 31 and 32 as are.
Use CLEARPRINT to take the place of CALL HCHAR loops.

Programs

Shows what CLEARPRINT does | CALL CLEARPRINT

|

Set loop chars 30 to 159 | >10@ FOR X=30 to 159

Show characters on screen. | >110 CALL HCHAR(1,1,X,768)

Clear columns 3 to 28 | >120 CALL CLEARPRINT

Delay loop | >130 FOR Y=1 TO 200::NEXT Y

Next character | >14@ NEXT X

Loop forever | >150 GOTO 100
I

CLSALL subprogram

Format CALL CLSALL

Description

The CLSALL command will find and close all open files.
This allows programmers to save time and program space.

Programs

The program to the right will

CLOSE all open files.

This
This
This
This
This

opens the printer.
opens a disk file JUNK.
opens a RS232 port.
opens a disk file CRAP.
closes all files.

>100

>100
>110
>120
>130
>140

CALL

OPEN
OPEN
OPEN
OPEN
CALL

CLSALL

#9:"PIO",OUTPUT
#2:"DSK1.JUNK", INPUT
#4:"RS232",0UTPUT
#7:"DSK2.CRAP",OUTPUT
CLSALL

COINC subprogram PAGE C6

Format CALL COINC(#sprite-number,#sprite-number,
tolerance,numeric-variable[,...])

CALL COINC(#sprite-number,dot-row,dot-column,
tolerance,numeric-variable[,...])

CALL COINC(ALL,numeric-variable[,...])
Description

See EXTENDED BASIC MANUAL PAGE 64 for more data. The only
difference is the use the comma has been added for
auto-repeat. Previously a COINC only allowed one sprite
comparison per program line.

Programs
* See EXTENDED BASIC MANUAL page 64

>100 CALL CLEAR :: X=190
>110 CALL SPRITE(#1,65,2,9,X,
20,0,#2,66,2,9,X,30,0,#3,67,

Clear screen set and X to 190 |
I
|
| ZJQJX)'ZeJe)
|
I
|
I

Set up 3 sprites to be on
the same vertical plane.

COINC scans ALL sprites for a
collision then #1,#2,#3 also.
Print results on screen.
Loop forever to line 120

>120 CALL COINC(ALL,A,#1,#2,1
2,B,#1,#3,12,C,#2,#3,12,D)
>130 PRINT A;B;C;D

>140 GOTO 120

The above program in RXB will put a -1 in A,B,C,D variables
unlike normal XB that would never detect all 4 collisions.

Options

While characters 144 to 159 are being used, you cannot use
sprites. Notice the ALL option MUST ALWAY BE FIRST as it
was given highest priority to increase the detection rate.
Though the ALL option does not improve much, the normal
COINC detections are slightly faster as the interpreter is
not looking to find the next COINC command on the next line
number. Instead the comma and the next sprite is checked.

COLLIDE subprogram

PAGE (7

Format CALL COLLIDE(#sprite-number,#sprite-number,
tolerance,dot-row,dot-column[,...])

CALL COLLIDE(#sprite-number,dot-row,
dot-column,tolerance,dot-row,

dot-column[,...])

Description

See EXTENDED BASIC MANUAL PAGE 64 has COINC. The problem is
XB COINC never tells you the location of a sprite and this
absolutely limits the types of way sprites could be used.

If sprites CONCide where did thi
a location how close did it get?

s happen? If a sprite hits

COLLIDE tells you exactly where they did collide and the

location of how close to the hit

box you wanted be informed.

Tolerance could be up to 256 bytes which could always be a
collide result or @ for exactly on pixel of top left corner
of the sprite. I recommend a setting of 6 for best results.

Programs

Clear screen
Set up 3 sprites to be on
screen

COLLIDE scans 3 sprites for
sprite hits on #1,#2,#3
sprite

Check for non zero?

If zero loop forever

Show hits or non hits

Zero out variables
Loop forever

Clear screen
Set up 3 sprites to be on
screen

COLLIDE for DOT ROW DOT COLUMN
at row 99 and column 99

for sprites #1,#2,#3 hit?
Check for non zero?

If zero loop forever

Zero out variables

Loop forever

>100 CALL CLEAR ! SPRITES
>110 CALL SPRITE(#1,65,2,9,99
,20,22,#2,66,2,64,99,X,30,25
,#3,67,2,9,99,-20,-35)

>120 CALL COLLIDE(#1,#2,8,R1,
C1,#1,#3,8,R2,C2,#2,#3,8,R3,
C3)

>130 IF R1+C1+R2+C2+R3+C3
THEN 140 ELSE 120

>140 PRINT "#1";R1;C1;"#2";R2
;C2;"#3";R3;C3

>150 R1,C1,R2,C2,R3,C3=0

>160 GOTO 120

>100 CALL CLEAR ! ROW:COLUMN
>110 CALL SPRITE(#1,65,2,9,99,
20,22,#2,66,2,64,99,30,25,#3,
67,2,9,99,-20,-20)

>120 COLLIDE(#1,99,99,8,R1,C1,
#2,99,99,8,R2,C2,#3,99,99,8,
R3,C3)

>130 IF R1+C1+R2+C2+R3+C3
THEN 140 ELSE 120

>150 R1,C1,R2,C2,R3,C3=0

>160 GOTO 120

COLOR subprogram PAGE (8

Format CALL COLOR(#sprite-number,foreground-color[,...])

CALL COLOR(character-set,foreground-color,
background-color[,...])

CALL COLOR(ALL,foreground-color,background-color
[,---1)

Description
See EXTENDED BASIC MANUAL page 66, presently modifications

to the COLOR subprogram is ALL will change character sets
@ to 14 to the same foreground and background colors.

SET NUMBER CHARACTER CODES
0 30-31
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103
10 104-111
11 112-119
12 120-127
13 128-135
14 136-143
15 144-151 (RXB addition)
16 152-159 (RXB addition)

Programs
All characters set foreground| >100 CALL COLOR(ALL,1,2,ALL,
transparent and background 1 | 2,1) :: GOTO 100
Swap characters set colors | >100 CALL COLOR(S,3,5)
I
Options

Characters 144 to 159 cannot be used with Sprites.

CcorPY command PAGE C(C9

Format COPY start line-end line,new start line,increment
Description

The COPY command is used to copy a program line or block of
program lines to any other location in the program. The COPY
does not affect the original lines and leaves them intact.

The block to be copied is defined by start line and end line.
If either of these numbers are omitted, the defaults are the
first program line and the last program line. However, at least
one number and a dash must be entered (both can't be omitted),
and there must be at least one valid program line between start
line and end line. To copy one line enter it as both the start
line and end line number. If any of the above conditions are
not met, a Bad Line Number Error will result.

The new start line number defines the new line number of the
first line in the block to be copied. This number must be
entered. There is no default. The increment defines the line
number spacing of the copied lines and may be omitted. The
default is 10.There must be sufficient space in the program
for the copied segment to fit between new start line number
and the next program line following the location where the

block will be moved. If not, a Bad Line Number Error message
is reported. This problem can be corrected by using a smaller
increment, or by using RES to open up space for the segment.
A Bad Line Number Error also results if the copying process
would result in a line number higher than 32767.

The COPY routine does not change any program references to
the copied lines. It is an exact copy of the source lines
with new line numbers. A check for sufficient memory space
is made before each line is copied. If space is not available
the copying process is halted than Memory Full Error reported.

Before the first line is copied, any open files are closed
and all variables are lost.

Description Addendum PLEASE NOTE:

The COPY command copies the lines in reverse order
If the copying process is halted due to insufficient
memory space, any unoccupied lines will be at the
beginning of the block.

Commands

Lines 100 to 150 are copied to| >COPY 100-150,9000,5
line 9000 and incremented by 5|

Line 10 is copied to line 25 >COPY 10-10,25

to 99 and incremented by 10

|
I
Line 5 to last line are copied| >COPY 5-,99
I
(Default). |

PAGE C10

DEL command PAGE D1

Format DEL start line-end line
Description

The DEL command is used to delete a line or block of lines
from a program. Start line number and end line number define
the lines to be deleted. If start line number is omitted,

line deletion will begin at the first line of the program. In
this case, end line number must be preceded by a dash. If

end line number is omitted, line deletion will end at the last
line of the program. If start line number and end line number
are omitted, then the first line number of the program to the
last line number of the program is deleted. At least one valid
program line must exist between start line number and end line
number or a Bad Line Number Error will be reported. If only
one line number is given without a dash, then that one line
will be deleted.

After the DEL command has executed any open files are closed
and all variables are lost.

Commands

Lines 100 to 150 are deleted. >DEL 100-150

|
|
Line 10 is deleted. | >DEL 1o
|
Line 5 to last line are | >DEL 5-
deleted. |
|
First line to 80 are deleted. | >DEL -80
|

DIR subprogram PAGE D2

Format CALL DIR("#"[,...])
CALL DIR("DSK#."[,...])
CALL DIR("DSK.DISKNAME."[,...])
CALL DIR(string-variable[,...])
CALL DIR(number[,...])
CALL DIR(numeric-variable[,...])

CALL DIR(ASC II value[,...])

Description

The DIR command catalogs the disk drive indicated by the

which can be 1 to z or by path name. The path name may be
up to 30 characters long. A numeric variable or number can
be used for drives 1 to 9 or if higher then it is assumed
that the numeric-variable or number is a ASCII value between
30 to 255. This allows a catalog of a RAM-DISK designated by
letters or control characters.

RXB DIR can be used from program mode or command mode. Also
DIR can catalog up to 32 drives in one command.

The SPACE BAR will pause the catalog routine, then when the
pressed again continues the catalog listing.
ANY OTHER KEY WILL ABORT THE CATALOG. See CAT for more info.

Programs

This line puts the pathname in| >100 A$="DSK.ADISKNAME"
the string A$ |

This line uses A$ for the name| >110 CALL DIR(A$)

of the device to catalog.

This line will catalog drive 4
if N=4

>100 CALL DIR(N)

This line will catalog drive C
if X=67 (ASCII 67 is C)

>100 CALL DIR(X)

>10 V$="WDS1.VOLUME.SUB-DIR."
>20 CALL DIR(V$)

This line is path name.

This line will catalog device
WDS1 for directory VOLUME and
catalog SUB-DIR

This line catalogs drives 1
then 2 then 3 then WDS1

>100 CALL DIR(1,2,3,"WDS1.")

DISTANCE subprogram PAGE D4

Format CALL DISTANCE (#sprite-number,#sprite-number,
numeric-variable,[,...])

CALL DISTANCE (#sprite-number,dot-row,
dot-column,numeric-variable[,...])

Description

The only thing added by RXB to DISTANCE is the auto repeat.
See EXTENDED BASIC MANUAL page 80 for more data.

Program

>100 CALL CLEAR

>110 CALL SPRITE(#1,65,7,99,9
9,0,10,#2,66,4,99,99,10,0,#3
,67,2,1,2,-50,-50)

The program at the right will |
I
|
I
Scans three sprites locations | >120 CALL DISTANCE (#1,#2,D,#1
I
|
I
|
I

set up 3 sprites on screen and
start them moving.

and returns the distance from LH3,E,#2,#3,F)
each other squared. >130 DISPLAY AT(1,1):"#1/#2";
D:"#1/#3";E:"#2/#3";F)

Restart loop >140 GOTO 120

Options

While characters 144 to 159 are being used, you cannot use
sprites. The DISTANCE subprogram does get more accurate if
you have more than one to check at a time, but is slightly
faster than normal XB as DISTANCE in RXB does not require
a search for another line number to CALL DISTANCE and find
a value. The RXB version just goes to the comma and finds
the next value of DISTANCE, so is much faster and saves
program memory.

EA Device Service Routine (DSR) PAGE E1

Format RUN "EA"
DELETE "EA"
CALL XB("EA™)

CALL CAT("EA")

OLD EA

SAVE "EA" -(Must have a program within
- memory to work at all)

CALL EA

Description

The EA DSR (Device Service Routine) allows access to the
Editor Assembler section of RXB. The access will work only
if the DSR is the GPLDSR or LINK DSR. In other words, a DSR
that acknowledges any type of DSR in RAM, ROM, GROM, GRAM,
or VDP. Most DSR's only accept DSK or PIO. Others like the
SAVE or LIST commands will only work with a program in the
memory first. Still others like CALL LOAD("EA") must have
the CALL INIT command used first. Almost all DSR's today
only acknowledge the ROM or RAM DSR's.

Programs
Go to the Editor Assembler. >100 CALL XB("EA")

This line asks for a string. >100 INPUT A$:: DELETE A$
Type EA will go to EA module

Switch to Editor Assembler >CALL CAT("EA")

Lower case can also be used. >call ea
Strange looping effect. >CALL EA("EA")

Options
BASIC and XB are also available.

EA subprogram PAGE E2

Format CALL EA

Description

The EA subprogram is used to switch to the Editor Assembler
Description Addendum

EA only works from EXTENDED BASIC, not BASIC.

Programs

The program at the right will | >100 CALL EA("DSK2.FW")
switch to Editor Assembler |

EXE subprogram PAGE E3

Format CALL EXE(cpu-address[,...])
CALL EXE(numeric-variable[,...])
Description

The EXE subprogram directly goes to the cpu-address >8300
using the GPL XML >F@ and expects to work like an assembly

BL @address so EXE(address) put that address at >8300 thus

to return you need an assembley RT to end. Programmers

can see this is a BL at a cpu-address. The programmer is
responsible for keeping track of the workspace and program
space he is using. Also for any registers while doing a BL or
another context switch. A RT will end the BL as long as
registers R11, R13, R14, R15 are not changed. By using CALL
LOAD or CALL MOVES the programmer can set up a BL routine in
the lower 8K by filling the registers with values first, then
using CALL EXE to directly complete these commands. This is
faster then CALL LINK as no interpretation of the access or
values are checked.

Here is the example of using EXE doing VDP garbage collect
the VDP memory not needing Memory Expansion but using the
XB ROM 1 COMPCT routine.

CALL EXE(29656) ! does VDP COMPCT garbage collection
or execute the SCROLL routing in XB ROM 1
CALL EXE(31450) ! does SCROLL screen routine

FOR L=1 TO 4 :: CALL EXE(31450) :: NEXT L
This would scroll the screen 4 times like PRINT does.

EXECUTE subprogram PAGE E4

Format CALL EXECUTE(cpu-address[,...])
CALL EXECUTE(numeric-variable[,...])
Description

The EXECUTE subprogram directly goes to the cpu-address and
expects to find 4 bytes to be present. The bytes are 1 and 2
define the workspace register address. Bytes 3 and 4 define
the address to start execution at in cpu memory. Programmers
can see this is a BLWP at a cpu-address. The programmer is
responsible for keeping track of the workspace and program
space he is using. Also for any registers while doing a BL or
another context switch. A RTWP will end either a BL or a BLWP
as long as registers set are not changed. By using CALL LOAD
or CALL MOVES the programmer can set up a BLWP routine in the
lower 8K by filling the registers with values first, then
using CALL EXECUTE to directly complete these commands. This
is faster then CALL LINK as no interpretation of the access
or values are checked.

EXECUTE runs a XML link from GPL by moving 12 bytes from the
Fast RAM at HEX 8300 to VDP at HEX ©3C@ then moving the value
in FAC passed from XB to HEX 8304 and does a GPL XML >F@
After a RTWP by the Assembly program, it returns VDP HEX ©3C0
to Fast RAM HEX 8300 so the 12 bytes are restored. Thus this
allows programmers use of FAC and ARG areas in Fast RAM.

Here is the program loaded into Fast RAM by EXECUTE:

AORG >8300
CPUPGM DATA >8302 First address.
BLWP @>834A Switch context
with FAC as dummy.
CLR @>837C Clear for GPL return.
RT Return to GPL.
END

If a programmer absolutely must use Fast RAM for his program
I suggest he set up a buffer for saving HEX 8300 to HEX 83FF
if only so it will not mess up any GPL pointers and don't go
and mess up the 12 bytes at VDP HEX >03C0. Then the only
thing to worry about is messing up something else.

EXECUTE PAGE E5

Programs

>100 CALL INIT
>110 CALL LOAD(9838,47,0,38,1

Line 100 initializes lower 8k |

Line 110 loads the assembly |

program shown below. VMBR | 14,4,32,32,44,3,128)

Line 120 loads registers with | >120 CALL LOAD(12032,0,0,48,0
VDP address, Buffer, Length. | ,2,255)

Line 130 runs line 110 program| >130 CALL EXECUTE(9838)

Line 140 loads the assembly | >140 CALL LOAD(9838,47,0,38,1
I
I
I

program shown below. VMBW 14,4,32,32,36,3,128)
Line 150 loads registers with >150 CALL LOAD(12032,0,0,48,0
VDP address, Buffer, Length. ,2,255)

Line 160 runs line 140 program| >160 CALL EXECUTE(9838)
Line 170 put a command in here| >170 CALL VCHAR(1,1,32,768)

Line 180 loops to line 160 | >180 GOTO 160

HEX ADDRESS|HEX VALUE|ASSEMBLY COMMAND EQUIVALENT

>266E >2F00 DATA >2F00 (workspace area address)
>2670 >2672 DATA >2672 (start execution address)
>2672 >0420 BLWP (first executed command)
>2674 >202C @VMBR (or >2024 VMBW)

>2676 >0380 RTWP

>2F00 >0000 REGISTER © (VDP address)

>2F02 >3000 REGISTER 1 (RAM buffer address)

>2F04 >02FF REGISTER 2 (length of text)

Normal XB using LINK.
Initialize for Assembly.
Load support routine.
LINK to program.

| >1e@ CALL INIT

I

I
RXB EXECUTE EXAMPLE. |

I

I

|

>110 CALL LOAD("DSK1.TEST")
>120 CALL LINK("GO")

>100 CALL INIT
>110 CALL LOAD("DSK1.TEST")
>120 CALL EXECUTE(13842)

Initialize for Assembly.
Load support routine.
EXECUTE program address.

EXECUTE does no checking so the address must be correct.
The LINK method finds the name and uses the 2 byte address
after the name to run the Assembly. EXECUTE just runs the
address without looking for a name thus faster.

Options.
Dependent on Programmers use and skill.

FILES subprogram PAGE F1

Format CALL FILES(number)
CALL FILES(numeric-variable)
Description

The FILES subprogram differs from the Disk Controller FILES
on the CorComp, TI, Myarc or Parcom versions. All of these
require a NEW after CALL FILES. NEW is executed after the
FILES subprogram in RXB, so there is no need to use NEW.
Also RXB FILES accepts values from © to 15 unlike the other
FILES routines that can only accept © to 9. Each open file
reduces VDP by 534 bytes, plus each file opened will use
518 bytes more. Only RXB has a valid CALL FILES(®) or a
CALL FILES(15) that works.

Programs
FILES opens usual buffers. >CALL FILES(3)

FILES ends the program and
executes NEW.

>100 CALL FILES(1)

>SIZE
Only possible in RXB >CALL FILES(9)

|

|

|

|

|

Only possible in RXB | >1e0 CALL FILES(15)

|

|

|

| >s1zE

|

Will display 5624 Bytes of Stack free and 24488 Bytes of
Program space free. At this point up to 15 files may be
open at the same time. Not recommended but possible now.
Also © files now is possible in RXB.

Options

See XB for even more powerful applications made easy.

For example CALL XB("DSK1.LOAD",1) will do a

CALL FILES(1) then NEW then RUN "DSK1.LOAD" AUTOMATICALLY

GCHAR subprogram

PAGE G1

Format CALL GCHAR(row,column,numeric-variable[,...])

Description

See EXTENDED BASIC MANUAL page 88 for more data. The only
change to GCHAR is the auto-repeat function.

Programs

This line stores the character
at row 4 column 5 in A, then
gets character at row 4
column 6 in B.

Gets row 9 column 3 in Q and
row 9 column 4 in R.

Put R at row 9 column 3 and
Q at row 9 column 4

Continue loop.

Options

>100 CALL GCHAR(4,5,A,4,6,B)

>100 CALL GCHAR(9,3,0,9,4,R)

>110 CALL HCHAR(9,3,R,1,9,4,0

»1)
>120 GOTO 100

CALL GCHAR in RXB is much faster than normal XB now.

GO (MOTION) option for subprogram PAGE

Format CALL MOTION(GO[,...])

Description

The GO command is a option in the MOTION subprogram.

GO does exactly what you would expect starts all sprite
motion by making them use previous sprite motion table.

Programs

See MOTION subprogram for examples of use of GO.

GMOTION subprogram PAGE G3

Format CALL GMOTION(#sprite-number,row-velocity,
column-velocity[,...])

Description

The GMOTION subprogram returns the row-velocity and
column-velocity as numbers from -128 to 127. If the sprite is
not defined, row-velocity and column-velocity is set to zero.
The sprite continues to move after its motion is returned, so
this must be allowed for. See EXTENDED BASIC MANUAL MOTION
subprogram for more data.

Program
GMOTION returns the row-

velocity into X and the
column-velocity into Y.

>100 CALL GMOTION(#1,X,Y)

>100 A(@)=-1::A(1)=1::CALL CL
EAR: :CALL MAGNIFY(2)::CALL S
CREEN(15)

>110 FOR S=1 TO 28

>120 CALL SPRITE(#S,64+S,INT(
RND*16)+1,20+S,50+S, INT (A(RN

Set up screen and up,down
,left,right variables
A(Q) and A(1)

Loop for 28 sprites.

Set up 28 random sprites
with random colors and

motion. D*1))*INT(RND*127),INT(A(RND
*1))*INT(RND*127))
Loop counter. >130 NEXT S

>140 S=INT(RND*28)+1::CALL GM
OTION(#S,X,Y)::CALL HPUT(24,
3,"CALL GMOTION(#"&STR$(S)&"
,"&STR$(X)&", "&STRE(Y)&")")
>150 FOR L=1 TO 1E3::NEXT L
>160 CALL CLEAR::Z=Z+1::IF
Z<8 THEN 140

Random sprite selector,
get that sprites motion,
put the values on screen.

Delay loop.
Clear screen and Z+1.
Loop till Z>8

Options
While characters 144 to 159 are being used, you cannot use
sprites.

HCHAR subprogram PAGE H1

Format CALL HCHAR(row,column,character-code)

CALL HCHAR(row,column,character-code,
repetition[,...])

Description

See EXTENDED BASIC MANUAL page 188 for more data. The only
syntax change to HCHAR is the auto-repeat function. Notice the
new auto-repeat must have the repetitions used or it gets row
confused with repetitions. Also RXB HCHAR is now in ROM.

Programs

This line puts character 38 at| >100 CALL HCHAR(1,1,38,99,9,1
row 1 column 1 99 times, then| ,87)
puts character code 87 at |
row 9 column 1

1,65,768,1,1,97,768,1,1,30,

|
I
Fills screen with characters. | >100 CALL HCHAR(1,1,32,768,1,
I
| 768) :: GOTO 100
I

Options

CALL HCHAR is now written in Assembly so much faster is
faster than normal XB, also as separate line numbers are
needed to continue placing characters on screen.

See VCHAR, HPUT, VPUT, HGET and VGET.

HEX subprogram PAGE H2

Format CALL HEX(string-variable,numeric-variable[,...

D

CALL HEX(numeric-variable,string-variable[,...

D

Description

The HEX subprogram converts Decimal to Hexadecimal or from
Hexadecimal to Decimal. If a number or numeric-variable is
first, HEX will convert the Decimal floating point value
(Rounded off) to a four character sting and puts the string
into the string-variable. If a string or string-variable is
first, HEX will convert the String into a Decimal integer and
put it into the numeric-variable. A numeric-variable or
number ranges from -32768 to 32767 or the Hexadecimal
equivalent of >8000 to >7FFF. The > is not used in HEX.

When a string or string-variable is null (length of zero)
the numeric-variable will contain @. The opposite is if a
number or numeric-variable is @ then the string-variable will
contain a length of four and a value of >0000. Any time a
string-variable is second it will be cleared before being
assigned a new string value. All strings in HEX must be
right justified or are returned as right justified, thus each
string will be padded with zeros.

HEX will only use the first four characters of a string to
convert the value, it will ignore the rest of the string.

Errors will result if a string contains characters other
then ©0-9 and A-F or a-f. Errors will result if a number 1is
less than -32768 or larger than 32767.

HEX subroutine in RXB is for Assembly mostly but is usefull
for new RXB routines like VDPSTACK or PRAM or EXECUTE.

Programs

From command mode.

Upper case

or lower case

will both return same result.
V=15

>CALL HEX("F",V)
>CALL HEX("f",V)
>PRINT V

>100 FOR D=-32768 TO 32767
>110 CALL HEX(D,H$)

>120 PRINT D,H$

>130 NEXT D

Line 100 sets address counter.
Line 110 converts it to HEX.
Line 120 shows DEC to HEX.
Line 130 continues loop count.

Line 100 asks for HEX number.
Line 110 converts HEX to DEC.
Line 120 shows DEC equivalent.
Line 130 starts program over.

>100 INPUT "HEX=":H$
>110 CALL HEX(H$,D)
>120 PRINT D:

>130 GOTO 100

Line 100 list of numbers.

It takes 8 bytes to store any
number in XB.

Line 110 read list into N.
Line 120 convert to HEX.

Line 130 Save into a string as
it takes 4 bytes per number.
Line 140 check for end of list
Line 150 show number of bytes
used to store numbers.

Line 160 show number of bytes
it would have used.

Line 170 show number of bytes
it saved using string instead.

>100 DATA 200,124,97,249,140,
77,81,173,254,78,93,12,38,65
,55,6,0

>110 READ N

>120 CALL HEX(N,N$)

>130 S$=S$&SEG$(N$,2,2)

>140 IF N<>0 THEN 110
>150 PRINT "NORMAL:";8%*16

|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
| >160 PRINT "USED: ";LEN(S$)+
| 1

| >170 PRINT "SAVED ";(8*16)-(
| LEN(S$)+1);"BYTES"

|

Options:

See LOAD and EXECUTE for better utilitys for Assembly or

GPL access. Also useful as better then a calulator.

HGET subprogram PAGE H4

Format CALL HGET(row,column,length,string-variable
[,...1)

Description

The HGET subprogram returns into a string-variable from the
screen at row and column. Length determines how many
characters to put into the string-variable. Row numbers from
1 to 24 and column numbers from 1 to 32. Length may number
from 1 to 255. If HGET comes to the edge of the screen then
it wraps to the other side.

Programs

The program to the right will
put into string-variable E$
the 11 characters at row 5 and
column 9.

>100 CALL HGET(5,9,11,E$)

I

I

I

I

| >100 CALL HGET(1,3,5,M$,9,3,1

The program to the right will | ,Q$,24,1,32,N$)

put into string-variable M$ |

the 5 characters at row 1 and |

column 3, then put into |

string-variable Q$ the 1 |

character at row 9 and column |

3, then put into |

string-variable N$ the 32 |

characters at row 24 and |
I
I

column 1.

Options:
See HPUT, VPUT, and VGET.

HONK subprogram PAGE H5

Format CALL HONK

Description

The HONK command produces the same sound as the ACCEPT or
in INPUT or if a error occurs.

Programs

The program to the right will | >100 PRINT "YN 2"

will produce a honk sound. |

Key request for YN. | >110 CALL KEY("YN",®,K,S)
I
|
I

Indicate N was pressed. >120 IF K=78 THEN CALL HONK
Continue on with program. >130 GOTO 100

HPUT subprogram PAGE H6

Format CALL HPUT(row,column,string[,...])
CALL HPUT(row,column,string-variable[,...])
CALL HPUT(row,column,number[,...])
CALL HPUT(row,column,numeric-variable[,...])
Description

The HPUT subprogram puts a string, string-variable, number,
or numeric-variable onto the screen at row and column. The
The row numbers from 1 to 24 and column numbers for 1 to 32.
If the string, string-variable, number, or numeric-variable
being put onto screen goes to an edge it wraps to the other
side. Unlike the EXTENDED BASIC DISPLAY AT the HPUT
subprogram will not scroll the screen. HPUT runs from ROM.

Programs
Line 100 puts string "THIS" on

the screen at row 10 and
column 4.

>100 CALL HPUT(10,4,"THIS")

Line 110 sets string-variable >110 A$="HPUT"

A$ equal to string "HPUT"

I
I
I
I
I
I
I
Line 120 puts string "is" at | >120 CALL HPUT(12,5,"is",14,4
row 12 and column 5, then puts| ,A$)
string-variable A$ at row 14 |
and column 4. |
I
I
I
I
I
|

Line 100 puts string A$ at row
16 and column 5.

>100 CALL HPUT(16,5,A%)

Puts 456 at row 10 col 15 >100 CALL HPUT(10,15,456)

Options:

CALL HPUT is now written in Assembly so much faster is
faster than normal then XB DISPLAY AT(row,column)

See HCHAR, VCHAR, HGET and VGET.

INIT subprogram PAGE 1I1

Format CALL INIT

Description

The INIT command is the same as the EXTENDED BASIC MANUAL
page 101. Originally INIT loaded more data then actually
existed, this has been fixed. The other correction is that
you no longer have to use INIT before LINK, or LOAD. They
will function if INIT has been called first or not. Unless
loading a program that needs the INIT first.

* NOTE *

RXB only loads up to >24F4 first open byte. Reasons
unknown XB loads useless junk from >24EA to >25FF that
seems to be a programming error loading 277 useless
bytes. Thus normal XB over writes these 277 bytes.

Programs
The program to the right will >100 CALL INIT
initialize the lower 8K by

|
I
loading support routines for |
assembly. |

|

INVERSE subprogram PAGE 1I2

Format CALL INVERSE(character-code[,...])
CALL INVERSE(ALL[,...])
Description

The INVERSE subprogram finds the character definition of the
character-code and inverts all the bytes in the character
definition. That means it just reverses the foreground and
background. The ALL feature inverts characters 30 to 143
thus not affecting characters 144 to 159 as this would
destroy sprites.

Programs

The program to the right will |
INVERSE all character-code (A)|
in the character definition
table in memory.

>100 CALL INVERSE(65)

|
|
|
The program to the right will | >100 CALL INVERSE(ALL)
INVERSE all character-codes |
from 30 to 143. |

|

|

Line 100 will ask for a string| >100 INPUT A$

of characters terminated by |

the ENTER key. |

Line 110 is a loop to counter.| >110 FOR L=1 TO LEN(A$)
Line 120 singles each one of | >120 C=ASC(SEG$(A$,L,1))
the characters in A$. |

Line 130 INVERSEs each one. | >130 CALL INVERSE(C)
Line 140 completes the loop. | >140 NEXT L

Line 150 restarts the program.| >150 GOTO 100

(Be sure and not enter any blank characters in this program)

I0 subprogram PAGE I3

Format CALL IO(type,address[,...])

CALL IO(type,bits,cru-base,variable,variable
[,...1)

CALL IO(type,length,vdp-address[,...])
Description

The IO subprogram allows access to and control of any chip in
the console or peripheral cards. The type refers to different
access methods like playing sound from GROM or VDP memory
automatically. The type can also specify reading or writing
directly to a Control Register Unit (CRU) address. Thereby
allowing direct chip control, or direct chip bypass if the
user wishes. The IO subprogram is a Graphics Programming
Language (GPL) command. So the function is exactly like GPL
despite being run from the XB environment. As most of XB is

written in GPL the user gains greater GPL like control.
After all the Operating System is written in GPL for a
good reason.*Note these docs are from GPL Manuals.

type address specifications

0 ---------- GROM sound list address.

1 - VDP sound list address.

2 m--------- CRU input.

3 eemmeeee-- CRU output.

R VDP address of Cassette write list.
5 e VDP address of Cassette read list.

6 ---------- VDP address of Cassette verify list.

The length specifies the number of bytes. The length can be
from -32768 to 32767 depending on the amount of VDP memory
that is available. Of course a value of -32768 is HEX >8000
and 32767 is HEX >7FFF and VDP normally in a TI is only 16384
or HEX >4000 of VDP. So be careful or lock-up will result.
The cru-base is the CRU address divided by 2 in decimal form
as the command automatically doubles the value input. The CRU
-base ranges from @ to 8191 or HEX >0000 to >1FFF with a EVEN
address for 8 bits or more being scanned. That means that a
value of 8191 will lock-up the system as it is looking for a
bit in 8192 that does not exist.

IO (SOUND LIST) PAGE 1I4
The variable can input or output values ranging from @ to 255
as that is equivalent to a single byte value. As there are
two variables 16 bits can be represented in the two 8 bit
variables. If CRU input reads less than 8 bits, the unused
bits in the byte are reset to zero. If CRU input reads less
then 16 but more than 8 bits, the unused bits in the word
will be reset to zero. The bits range from 1 to 16 for input
or output.

AUTO-SOUND INSTRUCTION GROM/GRAM/VDP
Format CALL IO(type,address[,...])

Control of the Sound Generator Chip (SGC) in the system
console is through a pre-defined table in GROM/GRAM or VDP
memory. Sound output is controlled by the table and the VDP
Interrupt Service Routine (ISR). A control byte at the end of
the table can cause control to loop back up in the table to
continue, or end sound output. The format of the table is the
same regardless of where it resides. The table consists of a
series of blocks, each of which contains a series of bytes
which are directly output to the SGC.

Since the VDP generates 60 interrupts per second, the
interrupt count is expressed in units of one-sixtieth of a
second.

When the I0 command is called, upon the next occurring
VDP interrupt, the first block of bytes is output to the SGC.
The interpreter (Operating System) waits the requested number
of interrupts (for example, if interrupt counts are 1, every
interrupt causes the next block to be output). Remember that
interpretation of XB continues normally while the SGC control
is enabled.

The sound control can be terminated by using an interrupt
count of @ in the last block of the table. Alternatively, a
primitive looping control is provided by using a block whose
first byte is @, and the next 2 bytes indicate an address in
the same memory space of the next sound block to use. (That
means one block points to another block only in the same type
of memory).

IO (SOUND LIST) PAGE 1I5

If the first byte is hex FF or decimal 255, the next two
bytes indicate an address in the other memory space. (That
means one block points to another block but in another type
of memory.) These allow switching sound lists from GROM/GRAM
to VDP or VDP to GRAM/GROM. By making this the beginning of
the entire table, the sound sequence can be made to repeat
indefinitely.

The type 0 indicates sound lists in GROM or GRAM and type 1
indicates sound lists in VDP.

Executing a sound list while table-driven sound control is
already in progress (from a previous sound list) causes the
old sound control to be totally supplanted by the new sound
instruction. (That means any sound chip command will over-
ride old sound chip commands).

The SGC has 3 tone (square wave) generators - 9, 1, and 2
all of which can be working simultaneously or in combination.
The frequency (pitch) and attenuation (volume) of each
generator can be independently controlled. In addition, there
is a noise generator which can output white or periodic
noise. For more information on controlling the SGC, see the
TSM9919 SGC specification.

ATTENUATION CONTROL (for generators 0, 1, 2 or 3)
One byte must be transmitted to the SGC:
Binary 1-REG#-1-Attenuation
REG# = register number (0,1,2,3)
Attenuation = Attenuation/2
(e.g. A=0000 © db = highest volume;

A=1000 16 db medium volume;
A=1111 30 db off.)

EXAMPLE: 1 10 1 0000 : turn on gen. #2 highest volume.
101 1 0100 : turn on gen. #1 medium high volume.
1 11 1 1111 | turn off gen. #3 (noise generator).

IO (SOUND LIST) PAGE 1I6

FREQUENCY CONTROL (for generators 0, 1, 2)

Two bytes must be transmitted to the SGC for a given register
and to compute the number of counts from the frequency F

use: N = 111860 / F

Binary 1-REG#-N(1s 4 bits)-00-N(ms 6 bits)
Note that N must be split up into its least
significant 4 bits and most significant 6
bits (10 bits total).

The lowest frequency possible is 110 Hz and the highest is
55938 Hz.

NOISE CONTROL |
_____________ |

One byte must be transmitted to the SGC:
Binary 1-1-1-0-0-T-S

T
S

@ for white noise, 1 for periodic noise;

Shift rate (0,1,2,3) = frequency center of noise.
S=3=frequency dependent on the frequency of tone
generator #3.

I0 (SOUND LIST)

Programs

Line
Line

Line

Line
A is
Line
Line

Line
Line
Line

100 clears screen.
110 to ...

160 ends sound list.

170 reads list into B and
counter

180 checks end of list?
190 shows how to access.

310 continues AD loop. |
320 executes sound list. |
330 prints out suggestion|

|

on how to test IO.

>100 CALL CLEAR ! Chimes

>110 DATA 5,159,191,223,255,2
27,1,9,142,1,164,2,197,1,144
,182,211,6,3,145,183,212,5,3
,146,184,213,4

>120 DATA 5,167,4,147,176,214
,5,3,148,177,215,6,3,149,178
,216,7

>130 DATA 5,202,2,150,179,208
,6,3,151,180,209,5,3,152,181
,210,4

>140 DATA 5,133,3,144,182,211
,5,3,145,183,212,6,3,146,184
,213,7

>150 DATA 5,164,2,147,176,214
,6,3,148,177,215,5,3,149,178
,216,4

>160 DATA 5,197,1,150,179,208
,5,3,151,180,209,6,3,152,181
,210,7,3,159,191,223,0

>170 A=A+1 :: READ B :: CALL

POKEV(A,B)
>180 IF B=0 THEN 190 ELSE 170
>190 PRINT "TYPE:": :"CALL IO(
1,8192)"

>200 CALL IO(1,8192)

>310 NEXT AD

>320 CALL I0(1,4096)

>330 PRINT "CRASH": :"TYPE:":
"CALL IO(1,4096)"

IO (SOUND LIST) PAGE 1I8

Programs

>100 CALL CLEAR ! CRASH
>110 DATA 2,228,242,5
>120 DATA 2,228,240,18
>130 DATA 2,228,241,16
>140 DATA 2,228,242,14
>150 DATA 2,228,243,12
>160 DATA 2,228,244,10
>170 DATA 2,229,245,9
>180 DATA 2,229,246,8
>190 DATA 2,229,247,7
>200 DATA 2,229,248,6
>210 DATA 2,229,249,5
>220 DATA 2,230,250,4

Line 100 clears the screen. |
I
|
I
|
I
|
I
|
I
|
I
|
| >230 DATA 2,230,251,3
|
I
|
I
|
I
|
I
|
I
|
I
|

Line 110 to ...

>240 DATA 2,230,252,2

>250 DATA 2,230,253,1

>260 DATA 2,230,254,1

>270 DATA 1,255,0,0

>280 FOR AD=4096 TO 4160 STE
P 4

>290 READ V1,V2,V3,V4

>300 CALL POKEV(AD,V1,V2,V3,V
4)

>310 NEXT AD

>320 CALL IO(1,4096)

>330 PRINT "CRASH": :"TYPE:":
"CALL IO(1,4096)"

Line 270 ends sound list.
Line 280 AD is VDP address to
start with and ends with.
Line 290 reads list.

Line 300 moves them into VDP.

Line 310 continues AD loop.
Line 320 executes sound list.
Line 330 prints out suggestion
on how to test IO.

All data values must converted to Binary in order to see
what is going on. You now have all the data that I have as
to this phase of IO types © and 1. See Editor Assembler
Manual also for more data on sound lists and sound chip.

IO (SOUND LIST) PAGE

Sound table creator for conversion of sound data.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

CALL CLEAR :: PRINT "*SOUND DATA TABLE CREATOR*"
Q$="0123456789ABCDEF"

INPUT "GENERATOR # 2" :GN

INPUT "DURATION ?":DUR

INPUT "FREQUENCY ?":FREQ

INPUT "VOLUME ?":VOL :: PRINT :

IF DUR>17 THEN 180

DUR=17

REM DURATION

DUR=INT((DUR*255)/4250) :: CONV=DUR :: GOSUB 400
DUR$=SEG$ (HX$,3,2) :: IF FREQ>-1 THEN 290

REM NOISE FREQUENCY

FR=ABS(FREQ)-1 :: FR$="E"&STR$(FR)

REM NOISE VOLUME

VOL=INT(VOL/2) :: CONV=VOL

GOSUB 430 :: VOL$="F"&SEG$(HX$,4,1)

PRINT "DATA>02";FR$;",>";VOL$;DURS:

GOTO 360

REM TONE FREQUENCY

FR=INT((111860.8/FREQ)+.5)

CONV=FR :: GOSUB 400

FR$=SEG$(Q$,GN*2+7,1)&SEGSH (HX$,4,1)&SEGSH(HX$,2,2)
REM TONE VOLUME

VOL=INT(VOL/2) :: CONV=VOL :: GOSUB 400
VOL$=SEG$ (Q$,GN*2+8,1)&SEG$ (HX$,4,1)

PRINT "DATA>03";SEG$(FR$,1,1)&SEG$(FR$,2,1);",>";

SEG$(FR$,3,2);VOL$;",>" ;DURS; "00" :

360
370
380
390
400
410
420
430
440
450

PRINT: :"ANOTHER SOUND (Y/N)?"

CALL ONKEY("YN",3,K,S) GOTO 100,390

GOTO 370

CALL CLEAR :: END

REM DECIMAL TO HEX

AY=INT(CONV)/16 :: BY=INT(AY)/16
CY=INT(BY)/16 :: DY=INT(CY)/16
AP=(AY-INT(AY))*16 :: BP=(BY-INT(BY))*16
CP=(CY-INT(CY))*16 :: DP=(DY-INT(DY))*16
HX$=SEG$(Q$,DP+1,1)&SEG$(Q$,CP+1,1)&

SEG$(Q$,BP+1,1)&SEG$(Q$,AP+1,1) :: RETURN

Use

this program to create Hex strings that can use

CALL MOVES to move strings into VDP to be played from
a CALL IO(1,VDP-address)

I0 (CRU ACCESS) PAGE I10

CRU ACCESS INSTRUCTION

Format CALL IO(type,bits,cru-base,variable,variable

[1)

The IO types 2 and 3 can be used to control devices.

I0 always must be the CRU address divided by 2 as any
value above 8192 will be out of range. The cru-base must be
divided by 2 as the 9901 chip ignores the least significant
bits of the base register it uses. See Editor Assembler
Manual page 61. The CRU data to be written should be right
justified in the byte or word. The least significant bit
will output to or input from the CRU address specified by
the CRU base address. Subsequent bits will come from or go
to sequentially higher CRU addresses. If the CRU input reads
less than 8 bits, the unused bits in the byte are reset to
zero. If the CRU input reads less than 16 bits but more than
8 bits, the unused bits in the full two 8 bit bytes will be
reset to zero.

Programs
Line 100 display what it does >100 DISPLAY AT(1,1)ERASE ALL
for you. :"THIS PROGRAM CHECKS FOR

UNUSUAL KEYS BEING PRESSED
, EVEN IF MORE THEN FOUR KEY
ARE BEING PRESSED AT ONCE"

>110 CALL I0(2,16,3,A,B):: IF

A=18 AND B=255 THEN 110 ELS
E CALL HPUT(24,3,RPT$(" ",30
),24,24,STR$(A)&" "&STR$(B))
>120 IF A=146 THEN CALL HPUT(
24,3, "FUNCTION KEY")ELSE IF

|
|
|
|
|
Line 110 scans CRU at >0006 |
|
|
|
|
|
| B=191 THEN CALL HPUT(24,3,"C
|
|
|
|
|
|
|
|
|
|

and reports keys pressed.
Line 120 more reports.

ONTROL KEY")ELSE IF B=223 TH
EN CALL HPUT(24,3,"SHIFT KEY
II)

>130 IF B=251 THEN CALL HPUT(
24,3,"ENTER KEY")ELSE IF B=2
53 THEN CALL HPUT(24,3,"SPAC
E BAR")ELSE IF B=254 THEN CA
LL HPUT(24,3,"PLUS/EQUAL KEY
II)
>140 GOTO 110

Line 130 still more reports.

Line start over scan of keys.

I0 (CRU ACCESS)

Programs

Line 100 clears screen.
Line 110 explains program.

Line 120 turn off card, show
the present byte value being
sent.

Line 130 display block to get
attention.

Line 140 send byte to card and
when done with loop, clear for
starting over program.

Line 100 explains program.

Line 110 cru address from
>1000 to >1F00, turn off card,
turn on card, delay for 2
seconds, turn off card, turn
off card. Loop end.

Options

PAGE I11

>100 CALL CLEAR

>110 CALL HPUT(4,7,"This is a
demo of the",6,7,"CALL IO(3
,8,2176,B)",8,7,"3 = TYPE(CR
U output)"”,10,7,"8 = NUMBER
OF BITS",12,7,"2176=address/
2")

>120 CALL IO(3,8,2176,8):: FO
R B=0 TO 255 :: CALL HPUT(14
,7,"B=byte (value "&STR$(B)&
"))

>130 CALL HPUT(18,5, "*¥**kkk:k
******************"119)5)"WA

TCH THE DRIVE LIGHTS",20,5,"
**************************")
>140 CALL I0(3,8,2176,B):: NE
XT B :: CALL HCHAR(14,24,32,
7):: GOTO 110

>100 | TURNS OFF/ON/OFF EACH
CARD FROM >1000 TO >1F00 BUT
WILL LOCKUP WITH CERTAIN
CARDS.

>110 FOR CRU=2048 TO 3968 STE
P 128::CALL I0(3,8,CRU,9,3,8
>,CRU,255)::FOR A=1 TO 200::N
EXT A::CALL IO(3,8,CRU,0)::N
EXT CRU

Some CRU address are used by the Operating System or XB and
any attempt to redefine them will create problems. Also some
of the address areas will return incorrect values as they
have changed since IO has accessed them, so take care.
Additionally some cards have the same problem, if the card
has a program that has a interrupt or CRU links turned on as
you access it, a complete lock up will result as a fight for
control ensues. So with that happy thought, a alternate way
is to use EXECUTE or LINK instead.

IO (CASSETTE ACESS) PAGE I12

CASSETTE INPUT/OUTPUT/VERIFY INSTUCTION
Format CALL IO(type,length,vdp-address[,...])

The three different cassette I/0 instructions use the same
format. The write and read instructions physically perform
Input/Output to the cassette. The verify instruction will
read a tape and compare it, byte by byte, against what is in
the specified VDP area. All will report an 1I/O error if one
is detected. No prompts are present with these three formats.
These three types control the cassette directly so no prompt
will tell the user to turn on or off the cassette record/play
buttons. The programmer must inform the user with own prompt.

Programs
(Presently I have no cassette to write programs with.)

AUDIO GATE

CRU bit 24 is the audio gate which allows data being read to
be heard. If the bit is set to 1, the data being read is
heard, and if the bit is set to @, the data is not heard.
Setting the bit to a @ or 1 is done with an IO instruction, or
a Assembly instruction.

MOTOR CONTROL

There are two CRU bits (22 and 23) used to control cassettes

1 and 2, respectively. When there is no Cassette IO being
done, both motors remain on. When Cassette IO is specified,
the DSR (Device Service Routine) will control the data being
read. If there are two motor units connected, the data will be
read simultaneously, or you may have the option of reading
data from one motor unit and playing the recorded voice from
another motor unit through the TV (Monitor) speaker.

*NOTE :

Compatibility with or without 32K or other devices is not a
concern as IO needs no RAM to work with. Therefore from just
a console all IO commands will work fine. If you only have a
Cassette and RXB you can quickly load/save/verify without
menus, or just make up your own.

ISR CRU MAP ADDRESS PAGE TI13

0 >0000 I/0 0: I/0 mode 1: timer mode

1 >0002 I+ 0: A peripheral interrupt occured

2 >0004 I+ @: a VDP interrupt occured

3 >0006 I = . , M N / firel fire2
4 >0008 I Space L K 3] H ; leftl left2
5 >000A I enter 0O I U Y P rightl right2
6 >000C I (none) 9 8 7 6 © downl down2
7 >000E I fctn 2 3 4 5 1 upl up2

8 >0010 I shift S D F G A

9 >0012 I ctrl W E R T Q
10 >0014 I (none) X C V B Z
11 >0016 - (see bit 27)
12 >0018 I/I+ Pull up 10K to +5V
13 >001A - (see bit 25)
14 >001C - (see bit 24)
15 >001E - (see bit 23)
16 >0020 I/0 n.c.
17 >0022 I/0 n.c.
18 >0024 0 Select keyboard column (or joystick)
19 >0026 0 Select keyboard column (or joystick)
20 >0028 0 Select keyboard column (or joystick)
21 >002A 0 Set alpha-lock key
22 >002C 0 1: turn CS1 motor on
23 >002E 0 1: turn CS2 motor on
24 >0030 0 Audio gate
25 >0032 0 Output to cassette mike jack
26 >0034 - (see bit 18)
27 >0036 I Input from cassette headphone jack
28 >0038 - (see bit 10: keyboard mirror)
29 >003A - (see bit 9)
30 >003C - (see bit 8)

ISROFF subprogram PAGE TI14

Format CALL ISROFF(numeric-variable)

Description

The Interrupt Service Routine (ISR) is a routine that executes
during timed intervals. The operating system of the TI is set
up for these. Mouse or Screen dumps or Hot Key programs bring
to mind the common uses of a ISR hook. The ISROFF routine in
RXB does as it suggests and turns the ISR hook off. But the
numeric-variable is used to store the address of where this
ISR hook came from. Of course ISRON is the opposite and will
turn it back on. Extreme care must be used when turning on or
off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)
will be @ when there is no ISR. Otherwise any other value will
mean that a ISR is being used.

Programs

This line checks ISR hook.
This shows if ISR is in use.
This line loads another file.
This starts another ISR.

This line checks ISR hook.
This shows if ISR is in use. >150 IF K THEN PRINT "ISROFF"
This turns first ISR back on. >160 CALL ISRON(J)

| >100 CALL ISROFF(3J)

I

I

I

I

I

I
This turns second ISR back on.| >170 CALL ISRON(K)

I

I

I

I

I

I

I

>110 IF J THEN PRINT "ISROFF"
>120 CALL LOAD("DSK1.HOT")
>130 CALL LINK("START")

>140 CALL ISROFF(K)

The program continues...

Safer way to check ISRHOOK
Check if zero then no ISR ON
if I+J<>0 then turn off ISR
and put into variable N

>100 CALL PEEK(-31804,1,3)
>110 IF I+J THEN CALL ISROFF

(N)
The above program has loaded N with the ISR HOOK Address.

Options:
See ISRON, PRAM, CALL SIZE, INIT, LOAD and VDPSTACK.

ISRON subprogram PAGE I15

Format CALL ISRON(numeric-variable)

Description

The Interrupt Service Routine (ISR) is a routine that executes
during timed intervals. The operating system of the TI is set
up for these. Mouse or Screen dumps or Hot Key programs bring
to mind the common uses of a ISR hook. The ISRON routine in
RXB does as it suggests and turns the ISR hook on. But the
numeric-variable is used to load the address of where this

ISR hook came from. Of course ISROFF is the opposite and will
turn it back off. Extreme care must be used when turning on or
off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)
will be @ when there is no ISR. Otherwise any other value will
mean that a ISR is being used.

Programs

This line peeks ISR hook.
This checks if ISR is in use,
and if not @ turn off ISR.
This line loads another file.

This starts another ISR.
This turns off ISR. >140 CALL ISROFF(ADDRESS2)
This checks if old ISR is ok, >150 IF I+J THEN CALL ISRON(A

| >100 CALL PEEK(-31804,I,3J)

|

|

|

|

|

|
if yes turn it on. | DDRESS1)

|

|

|

|

|

|

|

>110 IF I+J THEN CALL ISROFF(
ADDRESS1)

>120 CALL LOAD("DSK1.HOT")
>130 CALL LINK("START")

The program continues...

Safer way to check ISRHOOK
Check if zero then no ISR ON
if I+J<>0 then turn off ISR
and put into variable N

>100 CALL PEEK(-31804,I,3])
>110 IF I+J THEN CALL ISRON(N)

The above program has ISR HOOK Address loaded from N.

Options:
See ISROFF, PRAM, CALL SIZE, INIT, LOAD and VDPSTACK.

IV254 command PAGE I16

Format SAVE DSK2.PRGM, IV254

Description

The IV254 command functions normally to save XB programs in
Internal Variable format of 254 size per record.

An additional freature is IV254 may be specified after the
SAVE command to convert to Internal Variable 254 format.
The IV254 format makes it much more easy to tell an XB
program from EA programs when cataloging a disk.

Internal Variable files do take up one sector more then

XB program format. It should be noted that XB programs
smaller then 3 sectors can not be saves in IV254 format.

Command
>SAVE DSK2.TEST

Saves to DISK 2 in XB program
image format TEST

I
|
I
Saves to disk 3 in XB program | >sAVE DSK3.STUFF,IV254
Internal Variable 254 named |
STUFF |

I
Saves to WDS1 in dirctory EXB |
XB program Internal Variable |
254 named RB |

I

>SAVE WDS1.EXB.RB,IV254

Options
Allows better cataloging options for saving XB files.

JOYST subprogram PAGE 3J1

Format CALL JOYST(key-unit,x-return,y-return{,...])
Description

See EXTENDED BASIC MANUAL page 108
Except for adding auto repeat there is no changes to JOYST

Programs

>100 CALL CLEAR
>110 CALL SPRITE(#1,33,5,96,1

The program on the right will |
illustrate a use of JOYST |
subprogram. It creates two | 28,#2,42,2,96,128)
sprites and then moves them | >120 CALL JOYST(1,X1,Y1,2,X2,
around according to the input | Y2)
from the joysticks. | >130 CALL MOTION(#1,-Y1,X1,#2
Two players with the same | -Yy2,X2)
input speed and motion. | >140 GOTO 120

I

Options:

See JOYMOTION, JOYLOCATE, KEY or ONKEY making it much more
easy to use then normal XB routines as it combines several
commands into a single command to use, also much faster
response and more variables are used to control routines
for a user.

CALL JOYLOCATE(key-unit,x-return,y-return,

row-index,column-index,#sprite,dot-row,

CALL JOYLOCATE(key-unit,x-return,y-return,
row-index,column-index,#sprite,dot-row,
dot-column), key-return-variable)

CALL JOYLOCATE(key-unit,x-return,y-return,
row-index,column-index,#sprite,dot-row,
dot-column), key-return-variable)

JOYLOCATE subprogram
Format

dot-column)

GOTO line-number
Description

JOYLOCATE combines commands JOYST, KEY, LOCATE and a built in
IF fire-button GOTO line-number. Keyboard key or fire button
is in key-return-variable, but only joystick fire or key Q is
used for GOTO line-number. As seen above line number

option can be left out or furter key-return-variable can be
Index is number of dots for row and column.

left out too.
Programs

Clear screen.
Set character for use.

Set up a sprite to use.
Look for joystick movement
and move it or ignore.
Show variables on screen.
Loop forever

Show variables on screen.
Loop forever

Options:

>100 CALL CLEAR

>110 CALL CHAR(143,"FFFFFFFFFF

FFFFFF")

5120 CALL SPRITE(#1,143,2,9,19

0)

5130 CALL JOYLOCATE(1,X,Y,8,8,

#1,R,C,K) GOTO 160

>140 PRINT X;Y;K;R;C

>150 GOTO 130

>160 PRINT X;Y;K;R;C;"FIRE"
170 GOTO 130

See JOYMOTION or ONKEY or KEY for more XB changes created
by RXB to speed up the programs and make them easier to

read and write.

CALL JOYMOTION(key-unit,x-return,y-return,

#tsprite,row-index, column-index)

CALL JOYMOTION(key-unit,x-return,y-return,
#sprite,row-index, column-index,

CALL JOYMOTION(key-unit,x-return,y-return,
#sprite,row-index, column-index,

JOYMOTION subprogram

Format
key-return-variable)
key-return-variable)
GOTO line-number

Description

JOYMOTION combines commands JOYST, KEY, MOTION and a built in
IF fire-button GOTO line-number. Keyboard key or fire button
is in key-return-variable, but only joystick fire or key Q is
used for GOTO line-number. As seen above line number

option can be left out or furter key-return-variable can be
Index is number of dots for row and column.

left out too.
Programs

Clear screen.
Set character for use.

Set up a sprite to use.
Look for joystick movement
and move it or ignore.
Show variables on screen.
Loop forever

Show variables on screen.
Loop forever

Options:

>100 CALL CLEAR

>110 CALL CHAR(143,"FFFFFFFFFF

FFFFFF")

5120 CALL SPRITE(#1,143,2,9,19

0,20,0)

5130 CALL JOYMOTION(1,X,Y,#1,9

,9,K) GOTO 160
>140 PRINT X;Y;K
>150 GOTO 130
>160 PRINT X;Y;K;"FIRE"
170 GOTO 130

See JOYMOTION or ONKEY or KEY for more XB changes created
by RXB to speed up the programs and make them easier to

read and write.

KEY subprogram PAGE K1

Format CALL KEY(key-unit,return-variable,
status-variable[,...])

CALL KEY(string,key-unit,return-variable,
status-variable[,...])

CALL KEY(string-variable,key-unit,return-
variable,status-variable[,...])

Description

See EXTENDED BASIC
RXB has added auto
Strings or string

out any other keys.

length. The string
normal key routine

Programs

This line scans both joysticks
This line scans both of the
fire buttons & split keyboard.

Try this for fun.
(HINT: FCTN 4)

Add this line to programs.

Suspends program until key is

pressed. (any key)

Suspends program until ENTER

is pressed.

Suspends program until the

key from string A$

Suspends program until YES is

typed in.

MANUAL page 109

repeat features.

variables can now be added to KEY to lock
The strings can be empty or up to 255 in
function halts program execution unlike a
similar to ACCEPT or INPUT do.

>100 CALL JOYST(1,X,Y,2,XX,YY)
>110 CALL KEY(1,F,S,2,FF,SS)

>CALL KEY(CHR$(2),0,K,S)

>100 CALL KEY("YNyn",®,K,S)

>100 CALL KEY("",0,K,S)

>100 CALL KEY(CHR$(13),0,K,S)

>100 A$="123"
is used. >110 CALL KEY(A$,0,KV,STATUS)
>100 CALL KEY("Y",0,K1,S1,"E"
,0,K2,52,"s",0,K3,S3)

LIST command PAGE L1

Format LIST
LIST "device name"

LIST "device name":line length:start line-
end line

Description

The LIST command is the same as per Extended Basic Manual
page 114. The LIST routine has been modified to allow the
line length to be output to a device. The line length can
only be used if a device is specified. A colon (:) must
follow the line length. If not included in the LIST
command, the line length is set to the default of the
specified output device.

The line length can range from 1 to 255. If the length
specified is outside this range, a Bad Line Number Error is
reported.

Command
This line outputs to a device.| >LIST "PIO":80:100-120
>LIST "RS232.BA=1200":132:

This line outupts to a device

>100 ! TEST OF LIST
>110 | TEST OF LIST

This a dummy line.
Another dummy line.

LOAD command PAGE L2

Format CALL LOAD(address,value[,...])
CALL LOAD("access-name"[,...])
Description

The LOAD subprogram is used along with INIT, LINK, and PEEK,
to access assembly language subprograms. The LOAD subprogram
loads an assembly language object file or direct data into
the Memory Expansion for later execution using the LINK
statement.

The LOAD subprogram can specify one or more files from which
to load object data or lists of direct load data, which
consists of an address followed by data bytes. The address
and data bytes are seperated by commas. Direct load data

must be seperated by file-field, which is a string expression
specifing a file from which to load assembly language object
code. File-field may be a null string when it is used merely
to seperate direct load data fields. Use of LOAD subprogram
wth incorrect values can cause the computer to cease to
fuction and require turning it off and back on.

Assembly language subprogram names (see LINK) are included
in the file.

RXB does not check for Memory Expansion if address, values are
loaded. EXAMPLE: CALL LOAD(-32000,15) {-32000 = >8300 hex}
This was a oversight by original XB teams. This change

allows a poke into memory with or without Memory Expansion.

If Object Code File is loaded a CALL INIT is still checked.

MAGNIFY subprogram PAGE

Format CALL MAGNIFY(magnification-factor[,...})

Description

See EXTENDED BASIC MANUAL PAGE 118 for more data. A added
feature to MAGNIFY is using a comma more switching of the
sprite can be done, like instantly enlarge and reduce a
sprite for a shadow effect in XB.

Programs

* See EXTENDED BASIC MANUAL.
The program to the right will >100 CALL CLEAR :: X=190
will set up 3 sprites to be on
the same vertical plane.
2,9,X,-20,0)

>120 CALL MAGNIFY(1,2,1)
>140 FOR D=1 TO 2000::NEXT
>150 GOTO 120

MAGNIFY enlage and reduce it.
This is a delay loop.

STOP turns off sprite motion.
Clear screen and set up the >100 CALL CLEAR
Loop to create sprites.
TE(#L,L+65,2,L,L,-L,L) ::
NEXT L

Use MAGNIFY for effects.

GOTO 120
Options

While characters 144 to 159 are being used, you cannot use
sprites.

>110 CALL SPRITE(#1,65,2,9,
20,0,#2,66,2,9,X,30,0,#3,67,

>120 CALL MAGNIFY(3,4,3,4):

X,

D

>110 FOR L=1 TO 28::CALL SPRI

MAP (SAMS) option for subprogram PAGE M2

Format CALL SAMS("MAP"[,...])

Description

The SAMS MAP command will only work with a AMS memory card.
MAP MODE on the AMS card means the mapper registers are
turned on so they can be changed. But even with the mapper on
unless the read/write lines are on no mappers will appear to
be at the DSR address. SAMS ON turns on read/write mapper
registers.

Then a LOAD or SAMS can change the memory pages.

See docs MANUAL-SAMS for examples of memory maps. Also run
SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

Programs

This turns on map mode. | >100 CALL SAMS("MAP")
This turns on read/write. | >110 CALL SAMS("ON")
This fetches map register 2. | >120 CALL PEEK(16388,BYTE)
This turns off read/write. | >130 CALL SAMS("OFF")
This turns on pass mode. | >140 CALL SAMS("PASS")
This prints the page from map | >150 PRINT "Register 2 PAGE#"
I
|

mode in register 2. ;BYTE

The above program will print out whatever SAMS page is
presently stored in SAMS map register 2.

It is recommended that CALL SAMS("MAP") only be used to
check SAMS pages with CALL PEEK. CALL SAMS is much more easy
to use to manage AMS memory.

MERGE subprogram PAGE M3

Format MERGE "device.filename"

Description

See EXTENDED BASIC MANUAL PAGE 122 for more data. The only
reason for this page in RXB is a problem with SIZE and the
MERGE command breaks SIZE from working as they both use the
same address to record XB RAM END ADDRESS. This problem
will only happen if you use PRAM to change program normal
start and end locations of XB RAM. Please never use the
merge command if you have changed XB RAM with PRAM command.

Command

Change locations to start XB | >CALL PRAM(-12288,-16384)
to >CP00 and end to >De00O |

This will load a program. | >OLD DSK1.TEST

This will merge both programs.| >MERGE DSK1.TEST2

SIZE will report wrong program| >SIZE

space incorrectly

MOD subprogram PAGE M4

Format CALL MOD(number,divisor,quotiant,remainder

[5-23)

Description

The MOD command will make a MODULO FACTOR of a number and
divisor to produce a quotiant and remainder. MOD command
will only factor numbers from -32678 to 32767 larger values
will be clipped by the internal integer format. Also if the
number is © or divisor is @ a error of bad value will

result as you can not divide @ by anything or anything by .

Programs
>100 N=10 :: D=3

>110 CALL MOD(N,D,Q,R)
>120 PRINT Q,R

Number=10 and Divisor=3

Do MOD on values with results
Print Q and R values on screen
N=number,D=divisor,Q=Quotiant
and R=remainder

Divide 32767/3
Show results
Q=10922 and R=1

>100 CALL MOD(32767,3,0Q,R)
>110 PRINT Q,R

Divide -32768/3
Show results
Q=10922 and R=2

>100 CALL MOD(-32768,3,Q,R)
>110 PRINT Q,R

MOTION subprogram PAGE M5

Format CALL MOTION(#sprite-number,row-velocity,
column-velocity[,...])

CALL MOTION(ALL,row-velocity,column-velocity
[,---1)

CALL MOTION(STOP[,...])

CALL MOTION(GO[,...])
Description
See EXTENDED BASIC MANUAL PAGE 125 for more data. A added
feature to MOTION is STOP (disable sprite movement) and GO

(enable sprite movement). Also ALL that affects all sprites.

Programs
* See EXTENDED BASIC MANUAL.

>100 CALL CLEAR :: X=190
>110 CALL SPRITE(#1,65,2,9,X,

The program to the right will |
will set up 3 sprites to be on]
the same vertical plane, and | 20,0,#2,66,2,9,X,30,0,#3,67,
MOTION will stop all sprites. | 2,9,X,-20,0)

GO turns on sprite motion. | >120 CALL MOTION(GO)

This is a delay loop. | >140 FOR D=1 TO 2000::NEXT D
STOP turns off sprite motion. | >150 CALL MOTION(STOP)

This is a delay loop. | >160 FOR D=1 TO 2000::NEXT D
Change #3 motion direction, GO.| >170 CALL MOTION(#3,10,10,G0)
This is a delay loop >180 FOR D=1 TO 2000::NEXT D
Continue program. >190 GOTO 120

|
I
|
Clear screen and set up the | >100 CALL CLEAR::A(Q)=-127 ::
variables A(Q) and A(1) | A(1)=127
Loop to create sprites. | >11@ FOR L=1 TO 28::CALL SPRI
| TE(#L,L+65,2,L,L,-L,L) ::
| NEXT L
Use MOTION ALL to change the | >120 CALL MOTION(ALL,A(RND)*R
sprite velocities. | ND,A(RND)*RND)::GOTO 120

Options

While characters 144 to 159 are being used, you cannot use
sprites. Notice that CALL MOTION(STOP,#1,44,-87) is valid.

MOVE command PAGE M6

Format MOVE start line-end line,new start line,increment
Description

The MOVE command is used to move a program line or block of
program lines to another location in the program. The block
of lines to be moved is defined by start line number and

end line number. If either of these numbers are omitted, the
defaults are the first program line and the last program line.
However, at least one number and a dash must be entered (both
cannot be omitted), and there must be at least one valid
program line between start line number and end line number.
To move one both the start line number and end line number
are the same. If any of the above conditions are not met, a
Bad Line Number Error will be reported. The new start line
number defines the new line number of the first line in the
moved segment. When the block is moved it will be moved. If
not, a Bad Line Number Error message is reported. This
problem can be corrected by using a smaller increment, or

by using RES to open up space for the segment. A Bad Line
Number Error also results if the renumbering process would
result in a line number higher than 32767. Although moving
lines within the program does not increase the size of the
program, this command does require 4 bytes of the program
space for line moved. This memory use is temporary, but it
must be available in order to move the block. If sufficient
memory is not available a Memory Full Error results and no
lines are moved. This problem can usually be worked around
by moving the block a few lines at a time.Before the block
of lines is moved any open files are closed and any
variables are lost.

Commands

Move lines 100 thru 180 to
line 1000, increment by 5.
Moves lines 40 thru last line
to line 120, increment by 10.

| >MOVE 100-180,1000,5

I

|

I
Moves line 150 to line 110 | >MOVE 15@-150,1110

I

|

I

>MOVE 40-,120,
This line moves first program | >MOVE -8600,32220,2

line thru line 800 to line
32220, and increment by 2.

MOVES subprogram PAGE M7

Format CALL MOVES(type$,bytes,string-variable,string-
variable[,...])

CALL MOVES(type$,bytes,from-address,to-address
[,...D

CALL MOVES(type$,bytes,from-address,string-
variable[,...])

CALL MOVES(type$,bytes,string-variable,to-
address[,...])

CALL MOVES(string-variable,number,string-
variable,string-variable[,...])

Description

The MOVES subprogram moves (copies) FROM TO the amount of
bytes specified using the memory type string. MOVES does not
physically move memory but copies it. MOVES can RIPPLE a

byte thru memory by the from-address being one byte less than
the to address. The type$ below specifies what type of memory
is being moved and to what other type of memory it is moved
into. The bytes are 255 maximum if being moved into a string-
variable. MOVES address range is from -32768 to © to 32767

As MOVES mostly works with string-variables see the Extended
Basic Manual page 41. MOVES will error out with * BAD VALUE
IN ###* in a program if the string variable length exceeds
255, or if the number of bytes exceeds 255.

type$ TYPE OF MEMORY
. S STRING-VARIABLE
VR VDP ADDRESS
R cmmmmemeees RAM ADDRESS
G cmmmemeeee- GRAM ADDRESS

*NOTE: upper case only for type as lower case are ignored.

VDP address are from @ to 16384 (>0 to >3FFF)

PAGE M8

RAM may be moved but not into ROM, and that you may move
memory into GRAM but not GROM. You can copy or move memory
from ROM or GROM. Also note that any devices that use phony
GRAM will not work with MOVES as these devices don't use the

Programs

Line 100 has the type$ string. |
Line 110 thus uses type$ © VDP|
to VDP. 767 bytes are moved. A
VDP from-address of 1 and a
VDP to-address of 0. Will use
a ripple effect of moving all
screen bytes over one address.

Line 100 copies entire screen
into lower 8K.

Line 110 clears the screen.
Line 120 copies entire screen
into lower 8K.

Line 130 copies from lower 8K
to screen, then again. GOTO
makes it an endless loop.

from -32768 to @ to 32767 or
(HEX >8000 to >0000 to >7FFF)
Line 110 move GRAM/GROM to
VDP. 8 bytes to be moved. GA
is counter. 1024 is decimal
address of space character in
VDP pattern table.

Line 120 completes loop.

Loop address VDP
Load that 8 bytes into space

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Line 100 sets up loop. Counts |
|
|
|
|
|
|
|
|
|
|
|
|
Loop back |
|

>100 X$="VV"
>110 CALL MOVES(X$,767,1,0)

>100 CALL MOVES("VR",768,0,81
92)

>110 CALL CLEAR

>120 CALL MOVES("VR",768,0,90
00)

>130 CALL MOVES("RV",768,8192
,0,"RV",768,9000,0) :: GOTO
130

>100 FOR G=-32768 TO 32767

>110 CALL MOVES("GV",8,G,1024)

>120 NEXT G

>100 FOR V=0 TO 16384
>110 CALL MOVES("wv",8,V,1024)
>120 NEXT V

MOVES PAGE M9

Programs

Loop address RAM
Load that 8 bytes into space
Loop back

>100 FOR R=_32768 to 32767
>110 CALL MOVES("RV",8,R,1024)
>120 NEXT R

Line 100 sets string-variable.
Line 120 type$ specifies I$
to VDP. 55 bytes are moved.
Line 120 copies string J$ to
into lower 8K, then string I$
into lower 8K.

Line 130 copies string I$ to
into J$. Eliminates old J$%.
Then prints them.

Line 150 copies from lower 8K >140 CALL MOVES("R$",255,8192

I

I

I

I

| >100 I$=RPT$("I",255)
I
I
I
I
I
I
I
I
I

to J$, then from lower 8K at | ,J$,"R$",255,8492,I%) :: PRI

I
I
I
I
I
I
I
I
I
I
I
I
I

>110 CALL MOVES("$Vv",55,I%,0)

>120 CALL MOVES("$R",255,3%,8
192, "$R",255,I$,8492)

>130 J$=I% :: PRINT J$: : I$

8492 into I$ thus restoring NT J$: :I%
both strings and printing them
thus a way to save stings.
Line 100 sets up loop. Counts >100 FOR GA=-32768 TO 32767
from -32768 to @ to 32767 or
(HEX >8000 to >0000 to >7FFF)
Line 110 moves type$ GRAM/GROM
to VDP. 8 bytes to be moved.
GA is counter. H$ is string
for storing data found.

Line 120 prints H$ on screen.
Line 130 next loop

>110 CALL MOVES("G$",8,GA,H$)

>120 PRINT H$
>130 NEXT GA

Options

Dependent on Assembly Language programmers and the RXB
programs that are developed. MOVES is good for replacing those
CALL LOAD loops. It also provides a means to rewrite XB while
running XB instead of rewriting MERGE files then loading

them. Future devices benefit from MOVES as it can copy or move
different types of memory directly from or to them.

NEW command or subprogram PAGE

Format NEW
CALL NEW
Description

The NEW command is the same as the EXTENDED BASIC MANUAL
page 126. NEW can only be used from edit mode. But now
CALL NEW can be called from program mode. As expected

all values are reset and all defined characters become
undefined. Any open files are closed. Characters 32 to 95
are reset to their standard definitions. The TRACE and
BREAK commands are canceled. The program is erased from
memory .

Command

The line to the right will | >NEW
reset memory for XB. |

Programs

The program to the right will | >100 CALL NEW
reset memory for XB. |

OFF (SAMS) option for subprogram PAGE 01

Format CALL SAMS("OFF")

Description

SAMS ("OFF") command will only work with a SAMS memory card.
The read/write lines to the AMS mapper registers are turned
off so they will not be changed. Any PEEK or LOAD to the DSR
space will be zero after the SAMS("OFF") command. They can't
be read/written to. See docs MANUAL-AMS for examples of
memory maps.

Also run SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

Programs

This turns on read/write. | >100 CALL SAMS("ON")
This fetches map register 2. | >110 CALL PEEK(16388,BYTE)
This turns off read/write. | >120 CALL SAMS("OFF")
This turns on pass mode. | >130 CALL SAMS("PASS")
This prints the page from map | >140 PRINT "Register 2 PAGE#"
|
I

mode in register 2. ;BYTE

The above program will print out initialized SAMS page 2 in
register 2.

It is recommended that CALL SAMS("OFF") only be used to
protect the AMS mapper registers from being molested by
programs that could access the AMS. CALL SAMS is more

easy to use to manage SAMS memory as SAMS always turns off
the SAMS read/write registers like SAMS("OFF") does.

ON (SAMS) option for subprogram PAGE 02

Format CALL SAMS("ON")

Description

SAMS("ON") command will only work with a SAMS memory card.
The read/write lines to the SAMS mapper registers are turned
on so they can be changed. Any PEEK or LOAD to the DSR space
can then be used to change the mapper registers or read them.
See docs MANUAL-SAMS for examples of memory maps. Also run
SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

Programs

This turns on read/write. | >100 CALL SAMS("ON")
This loads 9 in map register 2| >110 CALL LOAD(16388,9)
This turns off read/write. | >120 CALL SAMS("OFF")
This loads values in lower 8K.| >130 CALL LOAD(8192,1,2,3,4)
This turns on pass mode. | >140 CALL SAMS("PASS")
This peeks values in lower 8K.| >150 CALL PEEK(8192,A,B,C,D)
This prints values. | >160 PRINT A;B;C;D
This turns on map mode. | >170 CALL SAMS("MAP")
This turns on read/write. | >180 CALL SAMS("ON")
This loads 2 in map register 2| >190 CALL LOAD(16388,2)
This turns off read/write. | >200 CALL SAMS("OFF")
This peeks values in low page.| >210 CALL PEEK(8192,A,B,C,D)
This prints values. | >220 PRINT A;B;C;D

|

It is recommended to use CALL SAMS("ON") only for when a
CALL PEEK is used to check a mapper register value.
CALL SAMS manages AMS mapping much better.

ONKEY subprogram PAGE 03

Format CALL ONKEY(string,key-unit,return-variable,
status-variable) GOTO line-number[,...]

CALL ONKEY(string-variable,key-unit,
return-variable,status-variable)
GOTO line-number[,...]

Description

ONKEY compares a string or string-variable characters one at
a time to the key return-variable until a match is found.
The string length may be longer then the number of GOTO
line-number list. But a error results if that key is pressed
as no line-number corresponds with the position of the key.
If the string length is less than the number of GOTO line-
numbers then the extra GOTO line-numbers are not used.

The position of the characters in the string correspond to
the GOTO line-number in the list. i.e. string "12345"

GOTO 1,2,3,4,5 in the example:

CALL ONKEY("12345",0,K,S) GOTO 10,20,30,40,50
The key pressed like say 3 means line 30 will be used.

Another example:

10 CALL ONKEY("Test",0,K,S) GOTO 22,29,34,41 :: GOTO 10
If T is pressed then 22 is used.

If e is pressed then 29 is used.

If s is pressed then 34 is used.

If t is pressed then 41 is used.

If no key pressed GOTO 10 to repeat line.

subprogram

PAGE 04

Programs
This line accepts a key>

Keep scanning the key.
First line.
Second line.
Third line.

Using GOSUB
Key scan.

First line.
Second line.

>100 CALL ONKEY("123",0,K,S)
GOTO 120,130,140

>110 GOTO 100

>120 PRINT "ONE"::GOTO 100

>130 PRINT "TWO"::GOTO 100

>140 PRINT "THREE"::GOTO 100

>100 GOSUB 110::GOTO 100

>110 CALL ONKEY("YN",3,K,S)
GOTO 120,130

>120 PRINT "YES"::RETURN

>130 PRINT "NO"::RETURN

The above program both act like ON GOTO with the key
selecting in the string the position and line number.

PASS (SAMS) option for subprogram PAGE P1

Format CALL SAMS("PASS")

Description

SAMS ("PASS") command will only work with a SAMS memory card.
PASS MODE on the SAMS card means the mapper registers are not
on. This is the normal mode of the SAMS. No extra memory is
is available or used. This renders the SAMS like a normal 32K
card. See docs MANUAL-SAMS for examples of memory maps. Also
run SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

Programs

This turns on read/write. | >110 CALL SAMS("ON")
Load 37 into map register 2. | >120 CALL LOAD(16388,37)
This turns off read/write. | >130 CALL SAMS("OFF")
This turns on pass mode. | >140 CALL SAMS("PASS")

|

SAMS ("PASS") is mainly used to turn off SAMS or protect the
SAMS pages from being used or to behaves like a normal 32K
when the SAMS is not being used.

PATTERN subprogram PAGE P2

Format CALL PATTERN(#sprite-number,character-value
[,.-.1)

Description

See EXTENDED BASIC MANUAL page 142 for more data.

Now 30 (CURSOR) and 31 (EDGE CHARACTER) and 144 to 159 may
used if only the top highest sprite numbers are used. For
example you can not use sprite #1 if you are using characters
143 to 146 to define a sprite pattern, but you could use
sprite #28 instead with no issues. Thus some care must be
taken to use all characters from 144 to 159 when using sprites.
But the advantage is now you can use 30 to 159 in RXB.

CALL PATTERN just allows Sprite patterns not characters.
Options

Sprites may not be used if characters 144 to 159 are being
redefined for use.

PEEKG subprogram PAGE P3

Format CALL PEEKG(address,numeric-variable-list[,...])

Description

The PEEKG command reads data from GROM into the variable(s)
specified. It functions identical to the regular EXTENDED
BASIC PEEK command page 143. Except it reads from GROM/GRAM.
GROM or GRAM address above 32767 must be converted to a
negative number by subtracting 65536 from the desired
address. Use CALL HEX to do this.

Programs

The program to the right will
read a byte from GROM.

>100 CALL PEEKG(767,B)

>100 FOR D=-32768 TO 32767
>110 CALL PEEG(D,X)

>120 CALL HEX(A,H$,X,B$)
>130 PRINT "Address:";H$,
D:"VALUE:";B$,X

>140 NEXT D

Address loop counter
PEEK Grom address value.
Convert to HEX

Show address and value.

Loop.

PEEKV subprogram PAGE P4

Format CALL PEEKV(address,numeric-variable-list[,...])

Description

The PEEKV command reads data from VDP into the variable(s)
specified. It functions identical to the regular EXTENDED
BASIC PEEK command page 143. Except it reads from VDP.

The VDP address should not exceed 16384 in a TI with a 9918
VDP chip, 9938 or 9958 VDP chips can go the full 32767.

VDP addresses above 32767 must be converted to a negative
number by subtracting 65536 from the desired address. Also
whenever a value is peeked or poked to the screen a screen
offset is present. 96 must be subtracted from or added to the
value to correct it.

Programs

The program to the right will
read a byte from VDP and put
it into variable B.

This line will print it.

>100 CALL PEEKV(767,B)

>110 PRINT B-96

>100 FOR D=0 TO 16383
>110 CALL PEEV(D,X)

5120 CALL HEX(A,H$,X,B$)
>130 PRINT "Address:";H$,
D:"VALUE:";B$,X

>140 NEXT D

Address loop counter
PEEK Grom address value.
Convert to HEX

Show address and value.

Loop.

PLOAD subprogram PAGE PS5

Format CALL PLOAD(memory-boundry, "access-name")
CALL PLOAD(contant,string-variable)
Description

The PLOAD subprogram loads ONLY program image files created
by PSAVE. PLOAD is the opposite of PSAVE. PLOAD is a faster
version of CALL LOAD. PLOAD has the speed of a hidden loader
and is much easier to use. PLOAD loads any 4K boundry in 32K.
Memory boundries are 2, 3, A, B, C, D, E, F (upper case).
i.e. 2 is >2000 or 3 is >3000 or A is >A000 up to F is >Foe00
Removing the zeros made more sense then adding 3 zeros.
Unlike CALL LOAD the PLOAD and PSAVE subprogram will work
without CALL INIT being used first. Remember to turn on the
interrupts if the program has them. Or the program support
will not work. See ISROFF and ISRON.
NOTE: 4K of VDP memory MUST be free for PLOAD to function or
a memory full error will result. Always place the
PLOAD command at the top of the RXB program.

Programs

This line loads a previously
saved programs image files.

This line turns on the mouse
(program would continue here)

>100 CALL PLOAD(2,"DSK2.MOUSE
",3,"DSK2.MOUSE2")
>110 CALL LINK("MSON")

saved program image file.)

This line turns on interrupt | >110 CALL ISRON(16384)
within program.

This line links to support
address DUMPIT routine.

>120 CALL LINK("DUMPIT") !

I

I

I

I

I

This line load a previously | >100 CALL PLOAD(B,"DSK1.DUMP"

I

I

I

I

| 1ink to Program Support

I

subprogram PAGE

P6

PLOAD is faster then CALL LOAD as it loads Program Image vs

LOAD which is stuck with slow uncompressed DF 80 files.

Options

SAMS users will find this a easy way to load RXB AMS support
into lower 8K.

EXAMPLE:
>100
>110
>120
>130
>140
>150

Z$="DSK1.PAGE"

FOR L=0 TO 15 STEP 2

CALL SAMS(2,L,3,L+1)

CALL PLOAD(2,Z$&STR$(L),3,Z$&STR(L+1))
NEXT L

CALL XB("DSK1.MAINPROGRAM",1)

The above program would load RXB SAMS pages © to 15 into

SAMS memory

from files named PAGE©® to PAGE15 on disk 1.

Then would set CALL FILES 1 and RUN "DSK1.MAINPROGRAM"

with 64K of

Assembly support for RXB. (16x4K=64K)

See SAMS, ISROFF, ISRON, EXECUTE, and MOVES.

POKEG subprogram PAGE P7

Format CALL POKEG(address,numeric-variable-list[,...])

Description

The POKEG command writes the data in the numeric variable
list to GRAM at the specified address. It functions identical
to the EXTENDED BASIC command LOAD page 115. Except that it
writes to GRAM. GROM or GRAM addresses above 32767 must be
converted to a negative number by subtracting 65536 from the
desired address. CALL HEX is recommended for this.

Programs

The program to the right will | >100 CALL POKEG(1001,128)
write 128 to GRAM address 1001 |

POKER subprogram PAGE P8

Format CALL POKER(vdp-number,numeric-variable[,...])

CALL POKER(numeric-variable,number[,...])

Description

The POKER command writes to vdp register a byte value. Only
registers © to 63 are valid. The byte value ranges © to 255.
The number of Registers were increased to 63 VDP Registers
for use with F18 register set.

Programs

This sets TEXT mode.

This is a delay loop.

This sets MULTI COLOR mode
This is a delay loop.

This sets BIT MAP mode.
This is a delay loop.

This sets NORMAL XB mode.
This resets memory.

>100 CALL POKER(7,244,1,240)
>110 FOR L=1 TO 500 :: NEXT L
>120 CALL POKER(1,232)

>130 FOR L=1 TO 500 :: NEXT L
>140 CALL POKER(9,2,1,2)

>150 FOR L=1 TO 500 :: NEXT L
>160 CALL POKER(9,0)

>170 CALL NEW

POKEV subprogram PAGE P9

Format CALL POKEV(address,numeric-variable-list[,...])

Description

The POKEV command writes data to VDP into the address
specified. It functions identical to the regular EXTENDED
BASIC PEEK command page 143. Except it reads from VDP.

The VDP address should not exceed 16384 in a TI with a 9918
VDP chip, 9938 or 9958 VDP chips can go the full 32767.

VDP addresses above 32767 must be converted to a negative
number by subtracting 65536 from the desired address.

CALL HEX is recommended for this.

Also whenever a value is poked or peeked to the screen a
screen offset is present. 96 must be subtracted from or added
to the value to correct it.

Programs

The program to the right will | >10@ CALL POKEV(767,65+96)
write A at address 767. |

PRAM subprogram PAGE P10

Format CALL PRAM(start-RAM-address,end-RAM-address)
Description

The PRAM command changes the location of the Start and End
of XB RAM program space. Normally XB RAM is start address

is >FFE7 and end address is >A040 in hex so the PRAM command
allows changing this location to as low as 1 byte of XB RAM
PROGRAM SPACE.

Any location from >A000 to >FFFF is a valid change in PRAM.
This command has no effect on Lower 8K Assembly RAM.

Use of PRAM is for control of XB RAM space and XB programs
can reside anywhere in the upper 24K RAM locations. Combined
with PSAVE and PLOAD assembly can be utilized in upper 24K.

Programs

This line is comment. >100 ! CALL PRAM(start-addres
s,end-address) 12K size

>110 CALL CLEAR

>120 SIZE::CALL KEY("",5,K,S)
>130 PRINT "CALL PRAM(-25,-24
576)":">E000->BO0O =12K RAM"
>140 CALL KEY("",5,K,S)::CALL
PRAM(-8192, -20480)

Clear screen.
Show size, delay, clear screen
Display it.

Change locations to start XB
to >EQ00 and end XB to >B000

This defauts to what ever the
previous values were same as
nothing was called

>CALL PRAM(©,0)
>SIZE

Change locations to start XB
to >CO00 and end to >D0O0O

>CALL PRAM(-12288,-16384)
>SIZE

Change locations to start XB
to >EQ00 and end XB to >E000

>CALL PRAM(-8192,-12288)
>SIZE

PSAVE subprogram

PAGE P11

Format CALL PSAVE(memory-boundry, "access-name")

CALL PSAVE(constand,string-variable)

Description

The PSAVE subprogram saves ONLY program image files to be
used for PLOAD. PSAVE is the opposite of PLOAD. PSAVE has
the speed of a hidden loader without the hassle.

PLOAD saves any 4K boundry from 32K.
Memory boundries are 2, 3, A, B, C, D, E, F (upper case).
i.e. 2 is >2000 or 3 is >3000 or A is >A000 up to F is >Foe00

Removing the zeros made more sense then adding 3 zeros.
Unlike CALL LOAD the PLOAD and PSAVE subprogram will work
without CALL INIT being used first.
To save a program with hidden loaders just break program
after loading is complete and type:

CALL PSAVE(2,"DSK#.NAME1", 3, "DSK#.NAME2")

I 2 4K of lower 8K

Remember to check for interrupts or the program will not work

after loading with PLOAD. See ISRON and ISROFF.

NOTE: 4K of VDP memory MUST be free for PSAVE to function or
a memory full error will result. Always place the PSAVE
command at the top of the RXB program.

Programs

Initialize lower 8K.

Load the assembly support.
Load the assembly support.

Turn on the mouse setup.
BSAVE 2 of 4K sections of
lower 8K.

>100 CALL
>110 CALL
>120 CALL
>130 CALL
>140 CALL

" 3,"DSK2.

INIT

LOAD("DSK1.MSETUPO")
LOAD("DSK1.HDSR")
LINK("MSETUP")

PSAVE (2, "DSK2 .MOUSE1
MOUSE2")

PSAVE subprogram PAGE P12

Procedure for hidden loaders. |
Loads program on disk 1 | >CALL XB("DSK1.LOAD")
Break program. | PRESS FCTN 4 to break program.
Get address of interrupts. | >CALL ISROFF(I)
See if they are on. | >PRINT I
Save the programs to disk. | >CALL PSAVE(2,"DSK2.EXAMPLE1",
| 3,"DSK2.EXAMPLE2")
|

Options
SAMS users will find this a easy way to save RXB SAMS support
EXAMPLE:

>100 Z$="DSK1.PAGE"

>110 FOR L=15 TO 32 STEP 2

>120 CALL SAMS(2,L,3,L+1)

>130 CALL PSAVE(2,Z$&STR$(L),3,Z$&STR$(L+1))

>140 NEXT L

The above program would save RXB SAMS pages 16 to 33 into
8 program image files named PAGE15 to PAGE33 on disk 1.

See SAMS, ISROFF, ISRON, EXECUTE, and MOVES.

QUITOFF subprogram PAGE Q1

Format CALL QUITOFF

Description

The QUITOFF command disables the QUIT KEY. The QUIT KEY is
already disabled upon entering RXB. See QUITON for more data.

Programs

The program to the right will | >100 CALL QUITOFF
turn off the QUIT KEY. |

QUITON subprogram PAGE Q2

Format CALL QUITON

Description

The QUITON command enables the QUIT KEY. The QUIT KEY is
already disabled upon entering RXB. QUITON makes the QUIT
once again functional. You may need to use this command
before running certain programs that use the QUIT key.

Programs

The program to the right will | >100 CALL QUITON
turn on the QUIT KEY. |

RANDOMIZE subprogram PAGE R1

Format RANDOMIZE

RANDOMIZE SEED

Description

The RANDOMIZE command can be found on XB manual page 151 to
help explain it's use. RXB unlike any other XB produced has

a feature that makes RND and RANDOMZE different and better.
When you start up RXB from Title screen a keyboard scan is
used to select your choices and the time it takes you to press
a key deternimes random number seed on XB start up. Thus more
random then other XB variants well unless you use RANDOMIZE or
RANDOMIZE SEED that would be exactly like other XB versions.
This is why I would suggest take out or never use RANDOMIZE if
you want random numbers generated in RXB.

Program

Will put hex >3567 into seed | >100 RANDOMIZE

RND example to prove speed | >11@ DIM N(100)
Counter in a FOR loop | >120 FOR X=1 TO 100
Load Array with random numbers| >130 N(X)=RND

Show that number | >140 PRINT N(X)
Repeat loop till done | >15@ NEXT X

Run this above example in TI BASIC, XB and RXB 2020 to

show game type results of program results with new RND

Options
Random Music programs will sound very very fast.

RES command PAGE R2

Format RES (Uses default values)
RES initial line,increment
RES initial line,increment,start line-end line
Description

The RES command is the same as per Extended Basic Manual page
155. The RESEQENCE command is deleted. The abbreviation RES is
the only access name. The RES command now allows a portion of
the program to be resequenced. This RES DOES NOT REPLACE any
undefined line numbers with 32767. Any undefined line numbers
in the program are left as is. This makes it easier to fix if
a problem is present. RES cannot be used to move lines from
one location to another inside a program. If the new line
numbers generated by the RES command would result in a line
being moved, a Bad Line Number Error is generated. A Bad Line
Number Error is also reported if there are no valid program
lines between start line and end line.

Command

Lines 10 to 50 are renumbered.
Line 10 becomes 20, increment
is 1.

Lines 700-800 are renumbered.
Line 700 becomes 100,
increment is 5.

Lines 50-80 are renumbered.
Line 50 becomes 1090,

| >RES 20,1,10-50
|
|
|
|
|
|
|
increment is 10. (Default) |
|
|
|
|
|
|
|
|

>RES ,5,700-800
>RES ,,50-80

Lines 1000 to last line are
renumbered. Line 750 becomes
1000, increment is 10.

Lines to 400 are renumbered.
First Line becomes 100
(Default), increment is 20.
Line 40 is renumbered 20.

>RES 1000, ,750-

>RES ,20, -400

>RES 20, ,40

RMOTION subprogram PAGE R3

Format CALL RMOTION(#sprite-number[,...])
CALL RMOTION(ALL[,...])
Description

The RMOTION subprogram reverses the row-velocity and
column-velocity as numbers from -127 to 127. This means that
RMOTION simply reverses the direction of the sprite specified
so it goes in the opposite direction it was going in.

This also means RMOTION ignores © and -128, so you can use
those to bypass RMOTION if you do not want RMOTION to change
the sprite. The fastest and slowest sprite speeds are never
affected by RMOTION. This feature adds more power to RMOTION.
The ALL feature also allows all sprites on the screen to
reverse all at once. ALL may also be called as many times as
wanted in a single program line.

Program
RMOTION reverses the row-

velocity and the column-
velocity in sprite-number 1.

>100 CALL RMOTION(#1)

This line reverses the motion | >100 CALL RMOTION(ALL)

of all sprites.

>100 CALL SPRITE(#1,33,2,96,1
8,99,84)
>110 IF RND<.8 THEN 110

Line 100 sets up a sprite.

Line 110 waits for a number
higher than .8 randomly.
Line 120 reverses the motion
of the sprite.

Continues the program.

>120 CALL RMOTION(#1)

>130 GOTO 110

Options
While characters 144 to 159 are being used, you cannot use
sprites.

RND subprogram PAGE R4

Format RND

Description

The RND subprogram in RXB has been replaced with a TI BASIC
version as the normal XB RND subprogram is hindered with so
much Floating Point as to make it 3 times slower then the
TI BASIC version of RND. Extensive testing proves that the
new RXB RND is many times faster then the previous version.

There will actually be some programs expecting a particular
RND pattern of random numbers that will no longer work the
same as a result of this change. But games will appear more
random then normal Extended Basic.

The RANDOMIZE seed still works but the results of the that
pattern of random numbers will be different then normal XB,
thus unless absolutely required will be a bigger benefit
then the cost of this XB previous feature.

Program

RND example to prove speed | >100 DIM N(100)
Counter in a FOR loop | >110 FOR X=1 TO 100
Load Array with random numbers| >120 N(X)=RND

Show that number | >130 PRINT N(X)
Repeat loop till done | >14@ NEXT X

Run this above example in TI BASIC, XB and RXB 2015 to

show game type results of program results with new RND

Options
Random Music programs will sound very very fast.

ROLLDOWN command or subprogram PAGE

Format CALL ROLLDOWN

CALL ROLLDOWN(repetition[,...])

Description

ROLLDOWN scrolls screen to the down so repetition will
repeat the scroll number of times to down.

Programs
Roll screen down 2 times >CALL ROLDOWN(2)
>100 PRINT "SCREEN PRINT"

>110 CALL ROLLDOWN
>100 GOTO 110

Prints line
Roll screen down
Repeat the program

>100 X$=" SCROLL DOWN"
>110 PRINT X$
>120 CALL ROLLDOWN(9)
>130 GOTO 100

Load X$ string variable
Print X$

Roll down 9 times use X$
Repeat the program

Options

New features allow for some special that can take the place

of some routines that are slower in XB.

ROLLLEFT command or subprogram PAGE

Format CALL ROLLLEFT

CALL ROLLLEFT(repetition[,...])

Description

ROLLLEFT scrolls screen to the left so repetition will
repeat the scroll number of times to left.

Programs
Roll screen left 2 times >CALL ROLLLEFT(2)
>100 PRINT "SCREEN PRINT"

>110 CALL ROLLLEFT
>120 GOTO 110

Prints line
Roll screen left
Repeat the program

>100 X$=" SCROLL LEFT"
>110 PRINT X$
>120 CALL ROLLLEFT(9)
>130 GOTO 100

Load X$ string variable
Print X$

Roll left 9 times use X$
Repeat the program

Options

New features allow for some special that can take the place

of some routines that are slower in XB.

ROLLRIGHT command or subprogram

Format CALL ROLLRIGHT

CALL ROLLRIGHT(repetition,[,...])

Description

ROLLRIGHT scrolls screen to the right so repetition will
repeat the scroll number of times to right.

Programs
Roll screen right 2 times

Prints line
Roll screen right
Repeat the program

Load X$ string variable
Print X$

Scroll right 9 times use X$
Repeat the program

Options

New features allow for some special that can take the place

>CALL ROLLRIGHT(2)

>100
>110
>120

>100
>110
>120
>130

PRINT "SCREEN PRINT"
CALL ROLLRIGHT
GOTO 110

X$=" ROLL RIGHT"
PRINT X$
CALL ROLLRIGHT(9)
GOTO 100

of some routines that are slower in XB.

ROLLUP command or subprogram

Format CALL ROLLUP

CALL ROLLUP(repetition[,...])

Description

ROLLUP scrolls screen to the up so repetition will
repeat the scroll number of times to up.

Programs
Roll screen up 2 times

Prints line
Roll screen UP
Repeat the program

Load X$ string variable
Print X$

Roll up 9 times use X$
Repeat the program

Options

New features allow for some special that can take the place

>CALL ROLLUP(2)

>100
>110
>120

>100
>110
>120
>130

PRINT "SCREEN PRINT"
CALL ROLLUP
GOTO 110

X$=" SCROLL UP"
PRINT X$

CALL ROLLUP(9)
GOTO 100

of some routines that are slower in XB.

SAMS subprogram PAGE S1

Format CALL SAMS(address-boundry,page-number[,...])

CALL SAMS(address-boundry,numeric-variable

[1)

CALL SAMS(command [,...])

Description

The SAMS command will only work with a SAMS memory card.
The address-boundry is a value in Hexadecimal denoted by

2 is >2000 or 3 is >3000 or A is >A000 or D is >D000O
EXAMPLE: CALL SAMS(3,page-number[,...])

This 3 stands for >3000 hexidecimal address boundry.

CALL SAMS uses boundry symbols upper case only.

i.e. 2 = >2000, 3 = >3000, A = >A000, B = >Bo00, C = >C000,
D = >DO0O, E = >EQ00 and F = >F0O00

SAMS turns on the read/write lines of SAMS mapper registers
stores the value into the mapper register chosen. Less wasted
pages results in more memory available.Page numbers can be
from © to 16383 so it is hard to explain this easy.

See 16383 would be >FFFF hexidecimal 64 Meg SAMS. Pages 0 to
255 would be a 1 Meg SAMS, Pages 256 to 511 would be a 2 Meg
SAMS, so on up to page 7935 to 8191 would be 32 Meg SAMS.

Pages 8192 to 16383 would be above 32K Meg SAMS so RXB 2020
handles 64 Meg SAMS, but not tested above 32 Meg yet.

(*Note: 16384 to 32767 would be for above 32 Meg to 64 Meg.)

A addtional new feature in 2020 RXB SAMS is use of upper 24K
memory can now be switched, but of course care must be taken
or will crash XB by removing the program running SAMS from
upper 24K. Imagine 8 Meg XB program swapping lines.

The order of changing 4K pages does not matter thus a
CALL SAMS(A,55,3,34) example is put 4K page 55 SAMS Memory
at >A000 and 4K page 34 at >3000

Original SAMS commands like ON, OFF, MAP or PASS still work.
"ON" turns on Mapper Registers.

"OFF" turns off Mapper Registers.

"MAP" turns on Map Mode so pages can be changed.

"PASS" default mode making the SAMS just like a normal 32K.

SAMS subprogram PAGE S2

Example is mixing commands:

100 CALL SAMS("ON","MAP",2,237,"OFF")

This turns on SAMS read/write Registers, turns on MAP mode,
sets 4K page with page 237 than turns off SAMS read/write
Registers.

Programs

This turns on the SAMS mapper.
This reads low half 8K page.

This reads high half 8K page.
This shows pages used. >140 PRINT "LOW";L;"HIGH";H
This loads a assembly program.| >150 CALL LOAD("DSK1.CHAR")

| >110 CALL SAMS("ON")

I
I
I
I

This changes low/high 4K pages| >160 CALL SAMS(2,16,3,17)

I
I
I
I
I

>120 CALL PEEK(16388,L)
>130 CALL PEEK(16390,H)

This loads a assembly program.| >170 CALL LOAD("DSK1.DUMP")
This changes low/high back. >180 CALL SAMS(2,L,3,H)
This uses a routine in CHAR. >190 CALL LINK("CHAR")

This changes low/high again. >200 CALL SAMS(2,16,3,17)
This uses a routine in DUMP. >210 CALL LINK("DUMP")

|

The above example program shows one RXB program using two
assembly programs with links for both. Thus only 16K of the
SAMS was used. 1024K would be 120 assembly support programs
Compatibility of most software assured in RXB AMS support.

Options:
See ON, OFF, MAP and PASS pages in RXB Documents for more
information on SAMS.

PAGE S3
SAMS MAPPER
>k 3k 3k 3k 3k 3k 5k 5k 3k 3k >k >k >k >k 3k 3k 3k 3k 5k 5k 5k >k 5k %k >k >k >k 3k 3k 5k 5k 3k 5k 5k %k %k >k >k >k 3k >k >k >k >k 5k 5k %k %k %k %k %k 3k 3k 3k >k >k >k >k %k *k >k % %k k k%
The SAMS card has tons of documents as to its function and use.
So to re-explain these docs would be pointless. Read the docs or
find some, sorry but the RXB package is already huge.
In PASS mode the mapper register setup is equivalent to:

mapper address mapper page num address range

>4004 = 16388 is MRO2 = >02 = 02 points to >2000 - >2FFF range
>4006 = 16390 is MRO3 = >03 = 03 points to >3000 - >3FFF range
>4014 = 16404 is MR1O = >0A = 10 points to >A000 - >AFFF range
>4016 = 16406 is MR11l = >0B = 11 points to >B00O - >BFFF range
>4018 = 16408 is MR12 = >0C = 12 points to >C000 - >CFFF range
>401A = 16410 is MR13 = >0D = 13 points to >DO0O - >DFFF range
>401C = 16412 is MR14 points to >E@00 - >EFFF range
>401E = 16414 is MR15 = >OF = 15 points to >F000 - >FFFF range
(MR=Mapper Register)

1
v
(™)
m

]
=
D

In MAP mode the mapper register setup is equivalent to: EXAMPLE1

mapper address mapper page num address range

>4004 = 16388 is MRO2 = >10 = 16 points to >2000 - >2FFF range
>4006 = 16390 is MRO3 = >11 = 17 points to >3000 - >3FFF range
>4014 = 16404 is MR1O = >12 = 18 points to >A000 - >AFFF range
>4016 = 16406 is MR11l = >13 = 19 points to >BO0O - >BFFF range
>4018 = 16408 is MR12 = >14 = 20 points to >C000 - >CFFF range
>401A = 16410 is MR13 = >15 = 21 points to >DO0O - >DFFF range
>401C = 16412 is MR14 = >16 = 22 points to >E@00 - >EFFF range
>401E = 16414 is MR15 = >17 = 23 points to >F000 - >FFFF range

(MR=Mapper Register)

PAGE sS4
SAMS MAPPER

>k 3k 5k ok >k >k >k 5k 5k 3k >k >k ok 5k >k >k >k 5k 5k 5k >k %k 5k 5k 5k >k %k >k 5k ok >k %k >k 5k 5k >k %k >k 5k 5k 5k %k >k >k 5k 5k >k >k >k 5k 5k >k >k >k >k %k >k >k %k %k %k >k %k k k

In map mode the mapper register setup is equivalent to: EXAMPLE2

mapper address mapper page num address range

>4004 = 16388 is MRO2 = >62 = 98 points to >2000 - >2FFF range
>4006 = 16390 is MRO3 = >63 = 99 points to >3000 - >3FFF range

>4014 = 16404 is MR10@ = >64 = 100 points to >A@00 - >AFFF range
>4016 = 16406 is MR11l = >65 = 101 points to >B@@O - >BFFF range
>4018 = 16408 is MR12 = >66 = 102 points to >C@00 - >CFFF range
>401A = 16410 is MR13 = >67 = 103 points to >D@@@ - >DFFF range
>401C = 16412 is MR14 = >68 = 104 points to >E@0Q - >EFFF range
>401E = 16414 is MR15 = >69 = 105 points to >F@@@ - >FFFF range

(MR=Mapper Register)
In MAP mode the mapper register setup is equivalent to: EXAMPLE3

mapper address mapper page num address range

>4004=16388 is MRO2 =>1FF9 = 8185 points to >2000 - >2FFF range
>4006=16390 is MRO3 =>1FFA = 8186 points to >3000 - >3FFF range

>4014=16404 is MR10 =>1FFB = 8187 points to >A@00 - >AFFF range
>4016=16406 is MR11 =>1FFC = 8188 points to >B@@@ - >BFFF range
>4018=16408 is MR12 =>1FFD = 8189 points to >C000 - >CFFF range
>401A=16410 is MR13 =>1FFE = 8190 points to >D@@@ - >DFFF range
>401C=16412 is MR14 =>1FFF = 8191 points to >E@0Q - >EFFF range
>401E=16414 is MR15 =>2000 = 8192 points to >F@00 - >FFFF range

(MR=Mapper Register)

SAVE command PAGE S5

Format SAVE DSK3.PRGM
SAVE DSK2.PRGM,IV254
Description

The SAVE command functions normally to save XB programs.
An additional freature is IV254 may be specified after the
SAVE command to convert to Internal Variable 254 format.
The IV254 format makes it much more easy to tell an XB
program from EA programs when cataloging a disk.

Internal Variable files do take up one sector more then

XB program format. It should be noted that XB programs
smaller then 3 sectors can not be saves in IV254 format.

Command
>SAVE DSK2.TEST

Saves to DISK 2 in XB program
image format TEST

I
|
I
Saves to disk 3 in XB program | >sAVE DSK3.STUFF,IV254
Internal Variable 254 named |
STUFF |

I
Saves to WDS1 in dirctory EXB |
XB program Internal Variable |
254 named RB |

I

>SAVE WDS1.EXB.RB,IV254

Options
Allows better cataloging options for saving XB files.

SCREEN command or subprogram

Format CALL SCREEN(color-code[,...])

CALL SCREEN("OFF"[,..

CALL SCREEN("ON"[,..

Description

1)
-1)

See EXTENDED BASIC MANUAL PAGE 165 for more data.

RXB has added features of OFF and ON to the SCREEN
command. OFF turns off the screen display while the ON
turn the screen back on. Use of OFF command allows for
writing to screen happens but not visible to user.

Programs
Turn screen to white

|
|
Turn off the screen display |
Prints line but screen off |
Waits for any key |
This opens a RS232 port. |
Prints line but screen on |
Waits for any key |
Special effect use of SCREEN |

Options

>100

>100
>110
>120
>130
>140
>150
>160

CALL SCREEN(16)

CALL SCREEN("OFF")

PRINT "THE SCREEN IS OFF"
CALL KEY("",5,K,S)

CALL SCREEN("ON")

PRINT "NOW SCREEN ON"
CALL KEY("",5,K,S)

CALL SCREEN(®,2,0,2,0,2)

New features allow for some special effects like draw screen
while screen is off and then pop it to user. Or use of the
comma to switch colors making some special effects.

SCROLLDOWN command or subprogram PAGE S7

Format CALL SCROLLDOWN

CALL SCROLLDOWN(repetition,string[,...])

Description

SCROLLDOWN scrolls screen to the down so repetition will

repeat the scroll number of times to down, the string will
only display vertically 24 characters of the string. If the
string is empty (null) it will just scroll the screen. When
null string is used this is a down version of PRINT. Unlike
PRINT it does not allows strings longer then 32 characters.

Programs

Scroll down 2 times print DONE| >CALL SCROLDOWN(2,"DONE")
>100 CALL CLEAR

>110 PRINT "SCREEN PRINT"
>120 CALL SCROLLDOWN

>130 GOTO 110

Clear screen for demo
Prints line

Scroll screen down
Repeat the program

>100 X$=" SCROLL DOWN"
>110 PRINT X$

>120 CALL SCROLLDOWN(9,X$)
>130 GOTO 100

Load X$ string variable
Print X$

Scroll down 9 times use X$
Repeat the program

Options
New features allow for some special that can take the place
of some routines that are slower in XB.

SCROLLLEFT command or subprogram PAGE S8

Format CALL SCROLLLEFT

CALL SCROLLLEFT(repetition,string[,...])

Description

SCROLLLEFT scrolls screen to the left so repetition will
repeat the scroll number of times to left, the string will
only display vertically 24 characters of the string. If the
string is empty (null) it will just scroll the screen. When
null string is used this is a left version of PRINT.

Programs

Scroll left 2 times print DONE| >CALL SCROLLLEFT(2,"DONE")
>100 CALL CLEAR

>110 PRINT "SCREEN PRINT"
>120 CALL SCROLLLEFT

>130 GOTO 110

Clear screen for demo
Prints line

Scroll screen left
Repeat the program

>100 X$=" SCROLL LEFT"
>110 PRINT X$

>120 CALL SCROLLLEFT(9,X$)
>130 GOTO 100

Load X$ string variable
Print X$

Scroll left 9 spaces use X$
Repeat the program

Options
New features allow for some special that can take the place
of some routines that are slower in XB.

SCROLLRIGHT command or subprogram PAGE S9

Format CALL SCROLLRIGHT

CALL SCROLLRIGHT(repetition,string[,...])

Description

SCROLLRIGHT scrolls screen to the right so repetition will
repeat the scroll number of times to right, the string will
only display vertically 24 characters of the string. If the
string is empty (null) it will just scroll the screen. When
null string is used this is a right version of PRINT.

Programs

Scrollright 2 times print DONE| >CALL SCROLLRIGHT(2,"DONE")
>100 CALL CLEAR

>110 PRINT "SCREEN PRINT"
>120 CALL SCROLLRIGHT

>130 GOTO 110

Clear screen for demo
Prints line but screen off
Scroll screen right

Repeat the program

>100 X$=" SCROLL RIGHT"
>110 PRINT X$

>120 CALL SCROLLRIGHT(9,X$)
>130 GOTO 100

Load X$ string variable
Print X$

Scroll right 9 spaces use X$
Repeat the program

Options
New features allow for some special that can take the place
of some routines that are slower in XB.

SCROLLUP command or subprogram PAGE S10

Format CALL SCROLLUP

CALL SCROLLUP(repetition,string[,...])

Description

SCROLLUP scrolls screen to the up so repetition will

repeat the scroll number of times to up, the string will
only display vertically 32 characters of the string. If the
string is empty (null) it will just scroll the screen. When
null string is used this is a up version of PRINT. Unlike
PRINT it does not allows strings longer then 32 characters.

Programs

Scroll up 2 times print DONE >CALL SCROLLUP(2,"DONE")
>100 CALL CLEAR

>110 PRINT "SCREEN PRINT"
>120 CALL SCROLLUP

>130 GOTO 110

Clear screen for demo
Prints line but screen off
Scroll screen UP

Repeat the program

>100 X$=" SCROLL UP"
>110 PRINT X$

>120 CALL SCROLLUP(9,X$)
>130 GOTO 100

Load X$ string variable
Print X$

Scroll up 9 spaces use X$
Repeat the program

Options
New features allow for some special that can take the place
of some routines that are slower in XB.

SIZE command or subprogram PAGE S11

Format SIZE
CALL SIZE
Description

See EXTENDED BASIC MANUAL PAGE 169 for more data.

RXB has added many more features to SIZE. RXB shows the
size and memory address of VDP, RAM and SAMS. Very uselful
for XB or Assembly progammers. EXAMPLE:

>STZE
11840 Bytes of Stack Free
24488 Bytes of Program
8192 Bytes of Assembly
* PAGE NUMBER = LOCATION *
2 Page = >2000 - >2FFF
3 Page >3000 - >3FFF
10 Page = >A00O - >AFFF

11 Page = >B000O - >BFFF
12 Page = >C000 - >CFFF
13 Page = >D00O - >DFFF
14 Page = >EQ00 - >EFFF
15 Page = >F000 - >FFFF
* MEMORY UNUSED and FREE *
>37D7 VDP Free Address
>0958 VDP STACK Address
>FFE7 Program Free Address
>A040 Program End Address
>2000 RAM Free Address
>4000 RAM End Address

This shows normal XB values but also includes more
useful things like Assembly free and SAMS pages

used and where these pages are. Lastly it shows
VDP STACK location, First free VDP address, XB RAM

First free address and End address. Lastly first

free Assembly address and End address used. SAMS size is
not reported just like Foppy size or hard drive is'nt!

SIZE command or subprogram PAGE S12

Format SIZE

CALL SIZE

Command

May only be used from command | >SIZE
mode. |

Programs

May only be used from program | >100 CALL SIZE
mode.

Delay for keypress.

Set up for Assembly support.

Shows memory used including

|

|

| >110 CALL KEY("",0,K,S)

|

|
Assembly space free. |

|

|

|

|

|

|

>120 CALL INIT
>130 CALL SIZE

Set VDP STACK to >1820 hex.
Show VDP STACK location.
Delay for keypress.

Set XB RAM to >A00O hex.
Shows 64 more bytes of XB RAM
for use in XB.

>140 CALL VDPSTACK(6176)
>150 CALL SIZE

>150 CALL KEY("",9,S,S)
>160 CALL PRAM(-24576)
>170 CALL SIZE

STOP (MOTION) option for subprogram PAGE S13

Format CALL MOTION(STOP[,...])

Description

The STOP command is a option in the MOTION subprogram.
STOP does exactly what you would expect, stop all sprite
motion and freezes the sprites in place.

Programs

See MOTION subprogram for examples of use of STOP.

SWAPCHAR subprogram PAGE S14

Format CALL SWAPCHAR(character-code,character-code
[,.-.1)

Description

The SWAPCHAR subprogram switches the first character-code
character definition with the second character-code
character definition. That means they swap definitions.
The characters range from 30 to 159.

Programs

Line 100 swaps character-code
65 with character-code 97.

>100 CALL SWAPCHAR(65,97)

|
I
|
Line 100 defines character- | >100 CALL CHAR(128,"FOFOFQFOF
|
I
|

code 128 and character-code OFOFOF0",159, "OFOFOFOFOFOFOF
159. ")

Line 110 swaps them, then will| >110 CALL SWAPCHAR(128,159,32
swap space with character 128 | ,128)

Line 120 continues program. >120 GOTO 110

|
I
Try this one on for weird. | >100 CALL SWAPCHAR(31,32,31,3
| 2)
| >110 CALL INVERSE(31)
| >120 GOTO 100
|

SWAPCOLOR subprogram PAGE S15

Format CALL SWAPCOLOR(character-set,character-set
[,.-.1)
CALL SWAPCOLOR(#sprite-number,#sprite-number
[,---1)

Description

The SWAPCOLOR subprogram swaps foreground and background
colors of the first set with the second set. Or swaps the
first sprite-number color with the second sprite-number

color. The character-set numbers are given below:

set-number

14
(also sprite table) 15
(also sprite table) 16

character-codes

LIV VL VL NY VP NE NP NY N N NN VL)

30

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

31
39
47
55
63
71
79
87
95
103
111
119
127
135
143
151
159

SWAPCOLOR subprogram PAGE S16

Format CALL SWAPCOLOR(character-set,character-set
[,.-.1)
CALL SWAPCOLOR(#sprite-number,#sprite-number
[,---1)

Programs

Swap foreground and background
colors of set 15 with set 5.

>100 CALL SWAPCOLOR(15,5)

|
I
|
Line 100 sets up two sprites | >100 CALL SPRITE(#1,65,2,99,9
on screen. | 9,9,9,#2,66,16,88,88,22,33)
Line 110 swaps sprite #1 color| >110 CALL SWAPCOLOR(#1,#2)
with sprite #2 color. |
|

Continue program. >120 GOTO 110

USER subprogram PAGE Ul

Format CALL USER(quoted-string)
CALL USER(string-variable)
Description

The USER subprogram overrides the normal editor of edit mode
of XB and reads a DV80 file into the key scan routine as if
the user was keying it in.

That means Batch Processing is creating XB programs from
Dv80 files, Editing XB programs, MERGING, Saving, and
RUNNING XB programs. Also RESequencing, adding lines, or
deleting lines, and re-writing lines from the DV80 file.

Every line to be input from the DV80 file MUST END WITH A
CARRIAGE RETURN! A line of input may be up to 588 characters
in length. The editor will error out if the crunch buffer is
full, reporting a *Line Too Long* error. (Over 163 tokens)

Other errors will be reported but will not stop the process
of USER continuing to input lines. To find errors in the DV80
file the input lines are shown on screen as they are input
into the editor, and errors will be reported. So you must
observe the screen for errors to test the DV80 file.

USER will stop after reaching the end of the file. But USER
can have its operation suspended CALL POKEV(2242,0) will
halt USER and CALL POKEV(2242,9) will resume USER.

INPUT and ACCEPT will try to read from USER if it is not
turned off. On the other hand DV8@ files can go directly into
a INPUT or ACCEPT prompts. Turn off USER to be safe though.

USER will only report errors upon opening, thus if incorrect
device or filename then USER reports * USER ERROR * and just
closes the USER file, thus ending operation of USER.

Example files are included with RXB to show and explain the
use of USER. The batch processing USER subprogram opens a new
world to the RXB programmer.

Addtionally new commands like CALL VDPSTACK and CALL PRAM used
with CALL USER means you can modify the entire XB memory in
both VDP and RAM from a BATCH file.

Possibilities are almost endless!

USER subprogram PAGE U2

Programs

This line starts USER to use
Batch processing on a file
called FILENAME

>CALL USER("DSK1.FILENAME")

Line 100 is same as above.
but within a program.

>100 CALL USER("DSK1.FILE")

Line 100 variable A% equals a | >100 A$="DSK.VOLUME.FILE"
String-variable path name.
Line 110 starts USER to use

Batch processing on A$

>110 CALL USER(A$)

Save this program as LOAD. >100 CALL USER("DSK1.BATCH")

Here is an example DV80 file you save with the name BATCH.

! BATCH file for using

NEW and CALL FILES and RUN. cr
cr

CALL XB("DSK1.A-PROGRAM",#) cr
! The # is @ to 15 (see FILES)

The above DV80 file uses cr to mean Carriage Return. And # is
for the number of files you wish open. A-PROGRAM is the name of
the XB program that needs a certain number of files open.

Options
To many to list out. See BATCH for demo.

VAL subprogram PAGE Vi1

Format VAL (">0000")

Description

The VAL function returns the number equivalent to
string-expression. This allows the functions, statements,
and commands that act on numbers to be used on
string-expression. The VAL function is the inverse of the
STR$ function.

VAL is on page 188 of Extended Basic manual. RXB modified
it to use Hexidecimal values with the > (greater sign) to
specify it from normal decimal numbers.

NOTE NEVER USE A VARIABELE TO ASSIGN HEXIDECIMAL VAL EVER!
RXB will lock up if you do this: X=VAL(">2000")

As X is numeric and ">2000" is the string in that command
line a substitution of 8192 decimal can not be done as XB
gets confused about which one can be saved. Instead use the
RXB command CALL HEX("2000",X) to assign a variable to HEX.
ONLY USE VAL(hex-string) with PRINT, LOAD, PEEK, POKE.

Programs

Line 100 prints on screen
8192

>100 PRINT VAL(">2000")

|
|
|
Line 100 loads values 67,39 at| >100 CALL LOAD(VAL(">8300"),
hex address >8300 | 67,39)
|
|
|

Line 100 peeks values into A >100 CALL PEEK(VAL(">2008"),
and B from hex address >2008 A,B)

Options: ONLY USE VAL(hex-string) with PRINT, LOAD, PEEK, POKE.

VCHAR subprogram PAGE V2

Format CALL VCHAR(row,column,character-code)

CALL VCHAR(row,column,character-code,
repetition[,...])

Description
See EXTENDED BASIC MANUAL page 188 for more data. The only
syntax change to VCHAR is the auto-repeat function. Notice the

new auto-repeat must have the repetitions used or it gets row
confused with repetitions. Also RXB HCHAR is now in ROM.

Programs

>100 CALL VCHAR(1,1,38,99,9,1
»87)

This line puts character 38 at
row 1 column 1 for 99 times,
then puts character code 87
at row 9 column 1

>100 CALL VCHAR(1,1,32,768,1,
1,65,768,1,1,97,768,1,1,30,
768) :: GOTO 100

Fills screen with characters.

Options

CALL VCHAR is now written in Assembly so much faster is
faster than normal XB, also as separate line numbers are
needed to continue placing characters on screen.

See HCHAR, HPUT, VPUT, HGET and VGET.

VDPSTACK subprogram PAGE V3

Format CALL VDPSTACK(numeric-variable)

Description

The VDPSTACK subprogram allows change of location of the VDP
STACK in VDP RAM. Care must be taken to where you place the
stack after all any over write or change can crash XB.
Normal VDP stack location is 2392 in decimal >0958 in Hex.
Some XB programs like The Missing Link use 6176 or >1820 Hex.
Another location would be like 4096 which is >1000 in Hex.
Combine PRAM with VDPSTACK and Assemlby can be loaded into
any memory locations previously very hard to use. That
required special loaders so now RXB has PLOAD and PSAVE to
get around these problems of loading anywhere in 32K now.

Programs

>100 CALL CLEAR

>110 CALL VDPSTACK(6176)

>120 PRINT ">1820 STACK LOCAT
ION"

>130 CALL SIZE

>140 CALL KEY("",0,S,S)

>150 CALL VDPSTACK(4096)

This line clears screen.
Set VDP STACK location.
Display it.

Show results.
Wait for key pressed.
Set VDP STACK location.

Display it. >160 PRINT ">1000 STACK LOCAT
ION"

Display it. >170 CALL SIZE

Options

See PRAM for similar change to RAM locations. Also see
PLOAD and PSAVE for loading anywhere in 32K RAM.

VERSION subprogram PAGE V4

Format CALL VERSION(numeric-variable)
Description

See EXTENDED BASIC MANUAL PAGE 190 for more data.
Also see Programs below.

This line will ask for version| >CALL VERSION(X)
and return current to numeric- |
variable X.

Line 110 checks for version >110 IF V<2016 THEN INPUT "DSK
to be larger than 2001 and if NAME":D$:: INPUT "FILENAME"
it is will ask for input to :F$:: CALL XB("DSK."&D$&F$)
use a old routine CALL XB. |

I
|
Line 100 asks for version num.| >100 CALL VERSION(V)
|
I
|

Options
Will always return current version of RXB. As you can see RXB
actually makes VERSION a valuable routine again.

VGET subprogram PAGE V5

Format CALL VGET(row,column,length,string-variable
[,...1)

Description

The VGET subprogram returns into a string-variable from the
screen at row and column. Length determines how many
characters to put into the string-variable. Row numbers
from 1 to 24 and column numbers from 1 to 32. Length may
number from 1 to 255. If VGET comes to the bottom of the
screen then it wraps to the top of screen.

Programs

The program to the right will
get into string-variable E$
the 11 characters at row 5 and
column 9.

>100 CALL VGET(5,9,11,E$)

The program to the right will
get into string-variable M$
the 5 characters at row 1 and

|

|

|

|

|

| >100 CALL VGET(1,3,5,M$,9,3,1

|

|
column 3, then put into |

|

|

|

|

|

|

|

,Q$,24,1,32,N$)

string-variable Q¢ the 1
character at row 9 and column
3, then put into
string-variable N$ the 32
characters at row 24 and
column 1.

Options:
See HPUT, VPUT, and HGET.

VPUT subprogram PAGE V6

Format CALL VPUT(row,column,string[,...])
CALL VPUT(row,column,string-variable[,...])
Description

The VPUT subprogram puts a string or string-variable or
number or number variable or constant onto the screen at
row and column. The row numbers from 1 to 24 and

column numbers from 1 to 32. If the string or number or
numeric variable or string-variable or constant being
put onto screen goes to an bottom it wraps to the top
screen just like VCHAR does. VPUT runs from ROM.

Programs
Line 100 puts string "THIS" on

the screen at row 10 and
column 4.

>100 CALL VPUT(10,4,"THIS")

Line 110 sets string-variable >110 A$="VPUT"

A$ equal to string "VPUT"

>120 CALL VPUT(11,5,"is",10,6
,A%)

Line 120 puts string "is" at
row 11 and column 5, then puts
string-variable A$ at row 10
and column 6.

Puts 456 at row 10 col 15 >100 CALL VPUT(10,15,456)

I
I
I
I
I
I
I
I
I
I
I
I
I
Options:

CALL VPUT is now written in Assembly so much faster is
faster than normal then XB DISPLAY AT(row,column)

(But a vertical version.)
See HCHAR, VCHAR, HPUT, HGET and VGET.

XB Device Service Routine (DSR) PAGE X1

Format RUN "XB"
DELETE "XB"

CALL CAT("XB")

OLD XB

SAVE XB -(Must have a program within
-memory to work at all)

CALL XB

Description

The XB DSR (Device Service Routine) allows access to the

RXB title screen. The access will work only if the DSR 1is

in the GPLDSR or LINK DSR. In other words, a DSR that
acknowledges any type of DSR in RAM, ROM, GROM, GRAM,

or VDP. Most DSR's only accept DSK or PIO. Others like the
SAVE or LIST commands will only work with a program in the
memory first. Still others like CALL LOAD("XB") must have the
CALL INIT command used first.

From EA option 5 you may type XB then enter, or from EA
option 3 type XB then enter, then enter again. If the EA
option 1 (edit), then 4 (print) type XB. From TI BASIC
use OLD XB or DELETE "XB".

Keep in mind that if it does not work, the problem is the
DSR your using. Almost all DSR's today only acknowledge the
ROM or RAM DSR's. As the XB DSR is in GROM/GRAM it seems a
bit short sighted on the part of most programmers to use
cut down versions of a DSR. Please discourage this as it is
a disservice to us all.

XB subprogram PAGE X2

Format CALL XB("access-name")

CALL XB(string-variable)

CALL XB("access-name",file-number)

CALL XB(string-variable,numeric-variable)
Description

The XB subprogram is like RUN in XB. (XB manual page 161)
The RUN subprogram can't run strings so special XB loader
programs were written and required. Using RUN A$ results in
a error report of * syntax error * in normal XB.

XB uses quotes like RUN or strings unlike RUN. So X

will run XB or BASIC programs from quoted or variables.

The file-number or numeric-variable denote the number of
files to be open before the XB program is loaded and run.
XB first sets the number of files open, uses a NEW and

then runs the access string. See FILES for more info.

If a CALL XB can't find the program or disk it will close
all files, clear all XB memory (Assembly lower 8K unaffected)
and leave you in XB command mode. You will know this by the
* Ready * and the cursor flashing below. This allows you to
try again with either RUN or CALL XB again.

If an empty string is used XB defaults to restart the
RXB title screen. See XB for more info.

Options
See FILES for more information on RXB new CALL FILES.

XB subprogram

PAGE X3

Programs

The program at the right will
load a XB Program named HOT
from disk drive 2 then run it.

This line loads string GZ$.
This line uses the string path
name to search all drives and
RAMDISKS for a disk named
XBGAMES and load a program
named FROG then run that
program.

|
I
|
I
|
I
|
I
|
I
|
I
Line 100 should be added to |
most RXB program to allow the |
QUIT key to work for aborting |
XB loader. |
|
CALL FILES(1) and run DSK1.TML|
|
I
|
I
|
I
|
I
|
I
|
I
|

The program at the right will
turn on the AUTO SELECTOR and
wait 4 second before switching
to the AUTO LOAD.

This line asks for a string.
This line uses the string and
if you type XB then enter will
switch to the RXB.

This line shows the CALL XB

Options

>100

>100

>110

>100

>110

>100

>100

>100
>110

CALL XB("DSK2.HOT")

GZ$="DSK.XBGAMES.FROG"

CALL XB(GZ$)

CALL QUITON

CALL XB("DSKR.LOAD")

CALL XB("DSK1.TML",1)

CALL EA("XB")

INPUT A%
DELETE A$%

>CALL XB

CALL BASIC and CALL EA are also available.
Also see XB, EA, BASIC DSR versions access too.

PAGE

This is a copy of the RXB title screen:

3k 3k >k 5k 5k 3k >k >k %k 5k ok ok >k %k >k 5k %k >k %k

* VERSION = 2022 *

3k 3k >k 5k 5k 3k >k >k %k 5k %k ok >k >k >k 5k %k >k %k

* RXB *
£ £
* creator *
£ k

* Rich Gilbertson *
3k 3k 3k 3k 5k 3k 3k 5k 3k >k 3k sk >k 5k %k ok 5k k %k

>> press ============= presult <<
ANY KEY = DSK#.LOAD
ENTER = DSK#.UTIL1

(COMMA) , = DSK#.BATCH

SPACE BAR

RXB COMMAND MODE

(PERIOD) . = EDITOR ASSEMBLER

NOTE: © (ZERO) defaults to WDS1.LOAD or after pressing

ENTER defaults to WDS1.UTIL1

PAGE 2

This is a explanation of the keys of the MENU screen:

(any key) = DSK#.LOAD

While the screen shows menu RXB is selected pressing

any key will be the drive that DSK#.LOAD will be run from.
RAMDISK number keys 1 to 9 or the alpha keys A to z.
Pressing © (zero) key will run WDS1.LOAD

(ENTER key) = DSK#.UTIL1

While the screen shows menu RXB is selected pressing
ENTER key allows Assembly Programs to be used. Pressing
any key will be the drive that DSK#.UTIL1 will be run from.
RAMDISK number keys 1 to 9 or the alpha keys A to z.

Pressing © (zero) key will run WDS1.UTIL1

(COMMA) , = DSK#.BATCH

While the screen shows menu RXB is selected pressing
COMMA key runs DSK#.BATCH
DSK#.BATCH defaults to DSK1 if BATCH not found will default to
command mode. For more information on this feature read USER in
the RXB information on BATCH FILE SYSTEM below.

(SPACE BAR) = RXB COMMAND MODE

Pressing the SPACE BAR results in XB command mode.
(Same as waiting a few seconds just like normal XB does.)

(PERIOD) . EDITOR ASSEMBLER

Pressing the . (PERIOD) key will switch to EDITOR ASSEMBLER
menu. Pressing the .

(ZERO) © = WSD1.LOAD

Pressing the @ (ZERO) key will start a WSD1.LOAD to execute
from hard drive 1. If the root directory has a LOAD program.

PAGE 3

BATCH FILE SYSTEM:

CALL USER overrides the normal edit mode by allowing a DV80 file
to take control. This allows conversions from DV80 to XB program
or DV80 to XB MERGE format or loading files, re-sequencing them,
and saving or merging or adding lines through another DV80 file.
All variables used through CALL USER are not affected so from a
running program more lines or variables can be added to the size
of the program without losing anything. Of course the RUN command
will as always clear all variables before the program is run,
this feature can be turned off with a CALL LOAD. (PRESCAN OFF)

As the USER subprogram can override the Editor many features can
be bypassed. Example:

NEW cr
OLD DSK1.XBPROGRAM cr
RES 11,3 cr
MERGE "DSK1.MERGEPGM" cr
SIZE cr
SAVE "DSK1.NEWPROGRAM" cr
RUN cr
NEW cr
OLD DSK1.LOAD cr

The above is a good example of a DV80 Batch file for RXB. Note
that there must be a CHR$(13) or Carriage Return after every input
line. If not then RXB assumes the it is the same line. But even
that is not much of a problem as RXB allows 21 lines of input per
program line. You can make them even longer if you want in USER.

PAGE 4

INPUT/OUTPUT ACCESS:

CALL IO controls the 9901 CRU chip. Sound lists can be played
independently of current status. (i.e. type in a program while
playing music from VDP/GROM.) Control Register Unit can turn
on/off single bits of CRU address bus. (i.e. cards/chips)
Cassette direct bus control. (i.e. no menu input/output, verify)

REDO KEY RESTORED (Was removed in RXB2001 to RXB2012):

The REDO (FCTN 8) is RESTORED in RXB2015. USER needed a buffer
that would not be molested or modified by CALL LINK, CALL LOAD
or routines that need a buffer and usually use the same area
that USER previously used. So to update and eliminate questions
of compatibility the USER buffer was installed in place of the
Edit recall buffer (REDO). The REDO key was not considered to be
of much use anyway as the Crunch Buffer is 163 tokens long and
in non-tokenized form the Edit recall buffer is only 152 bytes
long. That is why when REDO is pressed only part of the line
last typed in was recalled to screen. Additionally COPY lines,
and MOVE lines commands can do the same thing as REDO could, so
not much of anything is lost because it is assumed a TEXT EDITOR
will be used to create programs in RXB then use CALL USER.

PROGRAM DEVICE NAMES ACCESS:

New access names established as devices are now available. By

using any TRUE DSR (Device Service Routine) you may now access
the Editor Assembler main menu by typing 'EA' within Basic or

RXB. Example: RUN "EA" or OLD EA or DELETE "EA"

You may also access RXB from Editor Assembler or Basic or even
another cartridge. Example: OLD XB or DELETE "XB" from Basic.

At any Editor Assembler device prompt type 'XB' then enter.

FOR ASSEMBLY LANGUAGE PROGRAMMERS:

CALL MOVES is a new command that is a GPL command converted and
added to RXB to give total control over every type of memory with
in the TI-99/4A. MOVES works with address or strings to copy,
over-write or move blocks of memory of any type of memory. RAM,
VDP, GROM, GRAM, and ROM can be accessed by CALL MOVES.

PAGE 5

RXB TO ASSEMBLY DIRECT ACCESS BY ADDRESS:

EXECUTE is much faster than the traditional LINK routine built
into XB. The main problem with LINK is it checks everything and
pushes everything onto the VDP stack. After getting to Assembly
it pops everything off the stack for use or pushes what is to
be passed to XB onto the stack. EXECUTE on the other hand just
passes a address to a 12 byte Assembly program in Fast RAM and
RTWP ends the users program. A LINK will use up 6 bytes for the
name, 2 bytes for the address and wastes time checking things.

The advantage to EXECUTE is you use LOAD or MOVE or MOVES to
place the values needed directly into the registers then do it.
EXECUTE uses less space, is faster, and is easy to debug.

SAMS SUPPORT ROUTINES:

The SAMS has support routines built into RXB. CALL SAMS("MAP")
will turn the SAMS mapper on. CALL AMS("PASS") turns SAMS mapper
to pass mode. CALL SAMS("ON") will turn on the read/write
lines of the mapper. CALL SAMS("OFF") turns off the read/write
lines. With these commands pages of memory can be written with
a CALL LOAD or read with a CALL PEEK.

RXB AMS SUPPORT USES NO ASSEMBLY OR CALL LINKs. That means up
to 1 meg of 4K pages in entire 32K from RXB. That is impossible
to do from XB as you have to load your normal support somewhere
in 32K of assembly for everyone else not using RXB.

GPL is where all the support routines are stored in RXB so not
one byte is wasted on assembly support. That also means not one
byte of SAMS memory in wasted on control routines.

Speaking of control CALL SAMS switches 4K pages in the 32K SAMS.
CALL SAMS uses boundry symbols upper case only.

i.e. 2 = >2000, 3 = >3000, A = >A000, B = >BO0O, C = >C000,
D = >DO0O, E = >EQ00 and F = >F000

RND FUNCTION REPLACED

Extended Basic RND has been replaced with the TI BASIC RND as the
normal XB version of RND was hindered by to much Floating Point
that is very slow for use just to get a random number. Also the
XB RND was insanely complicated and bloated.

PAGE 6

INTERRUPT SERVICE ROUTINE CONTROL (ISROFF and ISRON)

ISR (Interrupt Service Routine) like MOUSE or Screen dumps or any
special program like XB Packer use a ISR. The problem with these
programs is unless they are written to work with new devices, a
lock-up occurs. EXAMPLE: running a mouse routine and XB Packer.
They were never made to work together. RXB now has a handle on
this. CALL ISROFF turns off the interrupt and saves the address
for turning it back on. CALL ISRON restarts the interrupt. As
several pages of the AMS can be used with interrupts a whole

new world of programming is now possible.

NO ASSEMBLY IS USED OR CALL LINKs. Absolute compatibility.

4K PROGRAM IMAGE FILE LOADER AND SAVER (PLOAD and PSAVE)

Hidden loaders were created to overcome the slow loading speed
of CALL LOAD. The disadvantage of a hidden loader is it can only
load one assembly support program at a time. PLOAD loads program
image files of 4K, and PLOAD can load as many times as needed
within one RXB program. PSAVE is the opposite and creates the
program image files of the 4K anywhere in memory. Lastly loading
200K into the SAMS card is easy with PLOAD. A simple loop can
load each SAMS 4K page with PLOAD. Each address boundry is in
PSAVE or PLOAD like SAMS uses boundry symbols upper case only.
i.e. 2 = >2000, 3 = >3000, A = >A000, B = >BO00, C = >C000,

D = >Do0O, E = >E000 and F = >F000

SAVE FILES IN INTERNAL VARIABLE 254 OR PROGRAM IMAGE FORMAT
RXB allows XB programs to load or be saved in two formats as
previously, but now RXB allows more control of this feature.
Normally XB will save files in Program Image format if these
programs are small enough to fit in VDP memory. If these XB
programs are larger then what will fit in VDP then XB programs
will be saved in Internal Variable 254 format. RXB has a added
feature added to save command. IV254 is the new feature.
EXAMPLE: SAVE DSK3.TEST,IV254

PAGE 7

JOYSTICK and SPRITE MOTION CONTROL with KEY built FIRE button
As normal XB JOYSTICK and SPRITE controls were seperate commands
this slowed down response in XB games and utilities. The main
issue was these commands were not combined. RXB added two new
commands to the arsenal but also added CALL KEY and also added
a IF THEN into the mix. Thus CALL JOYMOTION acts just like
CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number
To bring even more to the table is an INDEX value for SPRITES.
EXAMPLE:

CALL JOYMOTION(key-unit,x-return,y-return,t#sprite,
row-index,column-index, key-return-variable) GOTO line-number

key-unit,x-return,y-return are like normal XB JOYST
#sprite,row-index,column-index are like XB MOTION but dot based
key-return-variable is just like XB KEY key varible
GOTO line-number is like XB IF KEY THEN line-number

The GOTO is not required nor is the key-return-variable as these
are optional depending on your needs.

JOYSTICK and SPRITE LOCATE CONTROL with KEY built in FIRE button
As normal XB JOYSTICK and SPRITE controls were seperate commands
this slowed down response in XB games and utilities. The main
issue was these commands were not combined. RXB added two new
commands to the arsenal but also added CALL KEY and also added

a IF THEN into the mix. Thus CALL JOYLOCATE acts just like

CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number
EXAMPLE:

CALL JOYLOCATE(key-unit,x-return,y-return,row-index,column-index,
#sprite,dot-row,dot-column),key-return-variable) GOTO line-number

key-unit,x-return,y-return are like normal XB JOYST
#sprite,row-index,column-index are like XB LOCATE but dot based
key-return-variable is just like XB KEY key varible
GOTO line-number is like XB IF KEY THEN line-number

The GOTO is not required nor is the key-return-variable as these
are optional depending on your needs.

PAGE 8

RAM MEMORY MANAGER (CALL PRAM)

New way to use RXB way ahead of any other XB made is PRAM that
allows you to change the size of RAM in upper 24K of RAM.
Normally >A@40 is the end of RAM in XB as it starts going from
high RAM >FFFC down to lowest toward >A040 this allows 64 bytes
not used but was for the TI Debugger to use.

The PRAM command changes the location of the end of XB RAM.
Normally XB RAM is >A040 in hex so the PRAM command allows
changing this location to as low as 298 bytes of XB RAM.

Any location from >A000 to >FEBE is a valid change in PRAM.
Thus -322 decimal or >FEBE hex is highest address is -25576
decimal or >A000 hex lowest address. That tops our XB RAM to

64 more bytes then normal at max or down to 298 bytes of RAM.
How come no one else thought of this? (Need to fix program start)

VDP STACK MEMORY MANAGER (CALL VDPSTACK)

Normal VDP stack location is 2392 in decimal >0958 in Hex.
Some XB programs like The Missing Link use 6176 or >1820 Hex.
Another location would be like 4096 which is >1000 in Hex.
The VDPSTACK subprogram allows change of location of the VDP
STACK in VDP RAM. Care must be taken to where you place the
stack after all any over write or change can crash XB.
Changing the VDP stack location allows changes in type of VDP
mode being used like TEXT mode or Multi colored mode.

FILES BUFFEER MEMORY MANAGER (CALL FILES)

The FILES subprogram differs from the Disk Controller FILES on
the CorComp, TI, Myarc or Parcom versions. All of these require
a NEW after CALL FILES. NEW is executed after the FILES
subprogram in RXB, no need to use NEW it is built into FILES.
Also RXB FILES accepts values from © to 15 unlike the other
FILES routines that can only accept 1 to 9. Each open file
reduces VDP by 534 bytes, plus each file opened will use 518
bytes more. CALL FILES(®) will display 5624 Bytes of Stack free
and 24488 Bytes of Program space free. At this point up to 15
files may be open at the same time. Not recommended but possible.
Thus RXB © files now is possible in RXB or up to 15.

PAGE 9

SIZE REPORT CHANGE

RXB has a major change to SIZE routine not just adding CALL SIZE
but the report itself is extensivily more useful.

>SIZE press enter

Screen advances and you see:

>SIZE

11840 Bytes of Stack Free
24488 Bytes of Program Free
8192 Bytes of Assembly Free
256 Pages 1024 K SAMS

2 Page = Address >2000

3 Page = Address >3000
10 Page = Address >A000
11 Page = Address >B00©
12 Page = Address >C000
13 Page = Address >D000
14 Page = Address >E000
15 Page = Address >F000
>37D7 VDP Free Address
>0958 VDP STACK Address
>FFE7 Program Free Address
>A@40 Program End Address
>2000 RAM Free Address
>4000 RAM End Address

>cursor flashing

As you can see much more information then you are used to
seeing about memory of XB and system. Note first off the
display of Assembly Free memory and if you have a SAMS.
If you have a SAMS you also see the pages used and at the
address in Hex where it resides. Next is address of first
free VDP Address and below that you VDP Stack location.
For XB itself you also see the XB program first free
address and the End Address for XB program space. Lastly
the first free RAM in Assembly lower 8k and last address
used by Assembly.

PAGE 10

RXB FIXES TO XB REQUESTED BY USERS

RXB has numerous fixes thru the years a few will be mentioned
here as far back as 1983 when I bought my TI99/4A.

Recently asked to fix RANDOMIZE SEED not working with the
CALL LINK in XB, so I added a line to reset RANDOM SEED upon
use of the CALL LINK. Your welcome.

RXB and XB had a issue with PRINT that worked fine in BASIC
and a fix was made to solve this very rare issue. You might
have seen it when edge characters were improperly shown.

CALL FILES(@) never worked in BASIC or XB but does work in
RXB now. This meant a update to SIZE routine too.

Another XB bug was this example:

10 PRINT
LIST
ACCEPT A

Now a error is produced unlike version 110 XB crashes.

RXB shows this instead * Only legal in a program *

THANKS TO LEE STEWART

RXB 2021 has muliple routines now in Assembly to speed up these
routines CLEAR, CHARSET, HCHAR, VCHAR, HPUT, and VPUT. Expect
next version of RXB to have even more Assembly for former GPL
routines thanks to help from Lee Stewart. Specifically CLEAR,
HPUT, VPUT, HCHAR, VCHAR, SCROLL, ROLL and CLEARPRINT are all
speedy due to be Assembly now instead of GPL.

CALL subprogram list of format modified PAGE 11

CALL CHAR(ALL,pattern-identifier[,...])

CALL CHARSET(ALL)

CALL COINC(#sprite,#sprite,tolerance,numeric-variable[,...])
CALL COLOR(ALL,foreground-color,background-color[,...])

CALL DISTANCE (#sprite,#sprite,numeric-variable[,...])

CALL FILES(number) {© to 15 can be used now}

CALL GCHAR(row,column,numeric-variable[,...])

CALL HCHAR(row,column,character-code,repetition[,...])

CALL JOYST(key-unit,x-return,y-return[,...])

CALL KEY(key-unit,return-variable,status-variable[,...])
CALL KEY(string,key-unit,return-variable,status-variablel[,...
CALL MAGNIFY(magnification-factor[,...])

CALL MOTION(ALL,row-velocity,column-velocity[,...])

CALL MOTION(GO[,...])

CALL MOTION(STOP[,...])

CALL SCREEN(color-code[,...])

CALL VCHAR(row,column,character-code,repetition[,...])

B Classicas QI399.050
File Edit System Cartridge Disk Options Video Help

Classic99 QI399.050
File Edit System Cartridge Disk Options Video Help

version = 2621
R X B
creator

ETCHNGTISEER TS0

>> Press result <X
RN KEY DSK#.LOAD
EHITE R DSE# .U T
CE D FIMB DSK#.BRTCH
SPRACE BAR RXB COMMAND MODE
(PERIOD) . ENTTURSHASSEMEBINE R

ol bbb bbb ¥ Vi
T T O T vi vl
o el Lo L Lo Lo e L Lo L) o' Ui
o wONOOTaOSWL W vl w
&L LHNAAAAAAAK NS LN
wlllL b= LL Vi oo v
A L1 1111111 w@lLdTaeuv
L vi i TLT CLw
@O0 ST Tw T
Vie » JOOOAOOOO s L T TT
ahnh QA0 T Led o
el JOOTmOAawWuL a8 uw &
T ANAAAANAAAY o) &
K E Nl Neaud S EwT
el JHLILILILININ NI D (= s L
L SEG . W0 I R A TR BT
CREE AW o
Sowa=mnmnnnnononn OO oo
il NZowsmssgss s>l LTXT
o v Ao
Ll o)
0 O — HOMN G
vt (D OJ L WownlwTro®
O=rdMa =ML ®
LL) =t 5T v S=0JMTy) ML TOJT
FJ et O J 0D O J) vt vt vt vt et et AN AN
|

iy
™

-
-
e
o
-
-
=
d
L
I
1

“
T
™

S IR H N E S

DIEELCTOR Y

ASSEMEBLER
EDITOR

»"B PROGRAM
LOARAD AnDp RUN
PROGERM FILE

PAGE REA1

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 5k %k >k 5k %k 5k 5k %k ok 5k %k 3k 5k %k >k 5k %k >k 5k %k >k 3k %k >k >k %k ok >k %k 5k 5k %k %k 5k %k %k >k k *k

* RXB Editor Assembler Version 2015 *
K 3K 3k ok 3k 3 3 ok ok oK 5K 5k 3k sk ok 3k ok oK 5K 3k 3k sk 3k 3k ok oK 5K 5k 3k sk 3k 3k ok K 3K 3K 3k 3k 3k 3k ok ok oK 3k 3k ok 3k 3k ok ok oK oK ok ok 3k ok ok o oK ok ok ok sk

REA is a new completely re-written Editor Assembler module.
Any code not needed was removed, and this left room for many
new features. TI BASIC support has been removed to add in the
features like catalog a drive and set pathnames.

This is a copy of the REA title screen:

Rich Editor & Assembler V=2015

S SET PATHS NAMES

D DIRECTORY

A ASSEMBLER

E EDITOR

X XB PROGRAM

L LOAD and RUN

P PROGRAM FILE

RXB

PAGE REA2

This is a copy of the REA Configure Paths:

* CONFIGURE PATHS *

1 DSK1.EDIT1

2 DSK1.ASSM1

3 DSK1.SOURCE

4 DSK1.0BJECT

5 DSK1.LIST

6 OPTIONS: L

CTRL 1 - 5 DRIVE SELECTION

ANY OTHER KEY TO MAIN MENU

PAGE REA3

S SET PATH NAMES

Sets path of Editor, Assembler,source, object, and list files.
Selection of 1 to 6 allows a input like as in previous Editor
Assembler version including REA. Selection of CTRL 1 to 5 will
allow single selection of drive number for that path. As an
example is select CTRL 1 and the number 1 in path DSK1.EDIT1
will beep and ask for a drive number or letter. Another beep
indicates selection made and shows the change.

E EDITOR

Has a arrow to indicate which option has been selected, thus
the user will no longer make a mistake of saving a blank file
over the original that he actually meant to load or save. Also
as Edit path is preset the loading is automatic for the Editor
and the file to load. Save file still asks for a path name and
file. Print also asks for device or path name.

i.e. DSK.VOLUMENAME.EDIT1 or WDS1.DIRECTORY.SUBDIRECTORY.EDIT1
The directory will load the selected file if this option is
used. See Directory for features.

A ASSEMBLER

Assembler has no menu selection as CONFIGURE PATHS does this.
The ASSM1 path from S SET PATH automatically loads Source,
Object, List file paths and Options. A Assember key press from
main menu starts the Assembler, but SET PATH must be first.
i.e. DSK.VOLUMENAME.ASSM1 or WDS1.DIRECTORY.SUBDIRECTORY.ASSM1
The directory will replace the selected file if this option
is used. See Directory for features.

L LOAD and RUN

The directory will load the selected file if this option is
used. After loading a file all the link names will be displayed
inclucding all support routines. Using arrow keys the selected
link name can be executed by pressing ENTER key. Up to 8@ link
names will be displayed on screen thus arrow keys to select a
program name to run. See Directory for features.

P PROGRAM FILE

By pressing a single key then enter, DSK#.UTIL1 is displayed

and executed. # indicates the key pressed A to Z or 1 to 9.
Pressing @ (zero) runs WDS1.UTIL1 at PROGRAM FILE. The directory
will load the selected file if this option is used. The lower 8K
support routines normally only loaded by the EA3 option are now
loaded by this option too. So users can load FORTH, FORTRAM, and
C programs from the EAS prompt.

X XB PROGRAM

New feature that prompts for a XB program file to run. If the
file or device errors out, then a return to RXB command mode is
done. The * R X B * and a flashing cursor indicates the XB
command mode. By pressing a single key then enter, DSK#.LOAD is
displayed and executed. # indicates the key pressed. The
directory will load the selected file if this option is used.
See Directory for new features.

PAGE REA4

D DIRECTORY

A new feature that prompts for a device name. EXAMPLE: DSK1.
The period MUST be included if the full device name is used.

Or type in a path name EXAMPLE: WDS1.DIRECTORY. The quicker way
is to just type a number or letter then enter. Thus DSK#. is
used and the key pressed represents the # used. While the
catalog is being scrolled on screen, ANY KEY will pause the
display and reading of a disk, an arrow will appear next to the
file read and the ARROW KEYS will move the arrow up or down.
(FCNT/CTRL optional). To page forward or backward a screen at

a time press left and right arrow keys. The arrow last pointing
to will stay at the top or bottom of the screen display. This
in much better than other paging methods like DM10@@ or Funnel
Web Disk review to see single lines.

ONLY the SPACE BAR will pause the catalog until pressed again.

2015 added new keys to Directory: 1 = Editor.
A or a = Assembler file.
G or g = GPL Assembler file.

Use ENTER to select the filename so it will be placed into into
a buffer, the cataloger will auto-load Dis/Fix 8@ files into
the EA3 menu, Programs will be EA5, and only Dis/Var 254 is
considered to be XB programs. So to load XB programs use the
SPACE BAR to buffer the filename, thus loading is automatic
from there for XB programs. For DIS/VAR 8@ or DIS/FIX 8@ files
to be edited or assembled use ENTER or SPACE BAR, then select
the Edit or Assembler from the main menu. Loading is automatic
from there.

Directory will automatically assume you wish to catalog a
sub-directory if a Directory was selected. To buffer anything
else you must use the SPACE BAR, to select a filename to be
placed into a buffer, then auto return to REA main menu. Now
select the option to be used from this buffer.

If you select D DIRECTORY again, the buffer will be used and the
last device accessed will be used again. If you wish to clear
the buffer just use FCTN BACK to the REA main menu.

NOTE:

SOURCE file name must be filled in as this is the default. But
if you use DIRECTORY to flag a file it will be placed into

S SET PATH NAMES for all uses.

.RXB

A previous feature that was optional since version 1000 but had
no menu option on screen indicating it was a option. (Period) .
will return to RXB menu screen.

PAGE REA5
SYSTEM SUPPORT

The modified version of the Editor/Assembler no longer supports
the 99/4 computer. A 99/4A is required. All TI BASIC support
routines (CALL INIT, CALL LINK, CALL LOAD,CALL PEEK, CALL PEEKV,
CALL POKEV, and CALL CHARPAT) have been removed from the
Editor/Assembler. If you have a program that must be run from
TI BASIC and requires these routines, you must plug an
Editor/Assembler module into the cartridge connector.

There are some assembly language programs that access data
internal to the Editor/Assembler cartridge. These programs

will not run correctly due to the re-structuring of the data

in the Editor/Assembler module. For these programs you must

use your Editor/Assembler cartridge. On the other hand like
FunnelWeb REA loads the support routines before EA3 or EAS
loaders to engage, so C, FORTRAM, and FORTH will load from

the EAS5 prompt.

NO 32K NEEDED TO WHAT?

REA has been totally re-written so the user can now use some
of the features of REA without that nasty *NO MEMORY EXPANSION*
error turning up. The error routine only disallows the user
from accessing those aspects of REA that absolutely needs 32K
to work. The user may now use the REA EDITOR PRINT FILE menu,
or use the x R X B file loader menu, or use D DIRECTORY menu.
That means with RXB and REA the user can now print files, view
files, load any BASIC or XB program and catalog from REA with
or without a 32K memory.

EASTER EGGS

When on main menu of REA 2015 using keys 1 will still go to
the Editor, 2 will still go to Assembler, 3 will still go to
the Load and Run, and 5 will still go to RUN PROGRAM FILE.
There are more to look for.

