
EXTENDED BASIC COMPILER
By Harry Wilhelm – 2012-2022  

04/07/22

The Extended BASIC language is arguably the most versatile of the languages available for the 
TI99/4A. Programs are easy to write, relatively understandable, and simple to modify and edit, with 
lots of error checking to facilitate program development. The main drawback is that the double 
interpreted nature of Extended BASIC makes it extremely slow.

The intent in writing my Extended BASIC compiler was to make it possible to take full advantage of
the simple program development offered by XB, then make an end run around the speed limitations. 
The goal was to implement Extended BASIC as fully as possible within the time limits of the 
programmer and the memory limits of the machine. There are limitations and you will probably need
to adjust your programming style a bit, but in general, all the major features of XB run the same 
when compiled. This means that you can concentrate on writing the XB code and testing it in the XB
or XB256 environment. After the program has been perfected in Extended BASIC it can then be 
compiled into an equivalent code that functions at a speed approaching that of assembly language. 
The average Extended BASIC program will run at least 30 times faster after being compiled, and 
certain operations will run up to 70 times faster. 

There are several methods by which the compiler achieves this speed increase. First, Extended 
BASIC must perform a lengthy prescan operation before a program can even start. This is done in 
advance by the compiler and becomes part of the compiled code. Second, an XB program is 
interpreted twice by the computer; once by the Extended BASIC interpreter, and a second time by 
the GPL interpreter. The compiler generates "threaded code" which needs its own interpreter (the 
runtime routines), but at least only one interpreter is involved, and it's a fast one! Third, integer 
arithmetic is used throughout instead of floating point arithmetic. This alone makes the code run at 
least 5 times faster, albeit without the versatility of 13 digit floating point accuracy. Fourth, to 
increase the speed even more, virtually no error trapping is done. Any error reports that are given are
not very helpful anyway because you won't know the line number where the error happened. 
Therefore it is imperative that the Extended BASIC program be thoroughly debugged before you 
attempt to compile it! 

The compiler has been expanded to include all the XB256 assembly language extensions except for 
CAT and SL2VDP. XB256 removes most of the graphics restrictions imposed by Extended BASIC. 
It lets you toggle between two independent screens. Screen1 is the graphics mode normally used by 
Extended BASIC; Screen2 lets you define 256 characters, more than double the number normally 
usable in XB. When in screen2, you can use up to 28 double sized sprites using the patterns available
to Screen1. You can scroll screen characters left, right, up, or down and specify a window area for 
scrolling, leaving the rest of the screen unchanged. 

Page 1

Start with the README file in the docs, then study the file Using XBGDP, which has  directions 
on how to set up and use the Game Developer's Package on your equipment. Be sure you 
understand the steps to follow in developing, compiling, assembling, and loading an XB or XB256
program. Then come back here for detailed information about the compiler.



Other routines let you scroll smoothly one pixel at a time to the left, right, up or down. There are 
miscellaneous subroutines that let you hilight text, set the sprite early clock, print in any direction on 
the screen using all 32 columns, read from or write to the VDP RAM, write compressed strings to 
VDP, move sound tables into VDP, and more. With XB256 you can test your program in the XB 
environment, then use the compiler to get a huge performance increase. Once compiled an XB256 
program is stand alone. It does not need XB256 to run.

The compiler is part of the XB Game Developer's Package. This is designed to work with Mike 
Brent's Classic99 emulator which is an easy, fast and powerful development tool. It eliminates many 
of the annoyances that come when you are running on a real TI99, such as slowness, limited room in 
the disk drives, difficulty in reading text files, etc. Follow the directions in Using XBGDP to set up 
the Game Developer's Package on your equipment. 

The steps you need to follow in developing, compiling, assembling, and loading an XB or XB256 
program are described in Using XBGDP. 

The rest of this manual will describe the compiler, what instructions are supported, etc.

Starting at page 14, there is a section that describes how to use Asm994a, which is one of the cross 
assemblers available for the TI99. 

Starting at page 17, there is information on how to combine assembly subroutines with a compiled 
XB program.

If the program being compiled was written in TI BASIC, it is possible to use the runtime routines 
from the original TI BASIC compiler. This is limited to BASIC only, but it generates programs that 
are more compact and a wee bit faster than those created by the newer compiler. This is described 
starting at page 22.

Page 2



Differences from Extended BASIC

An ideal compiler would be able to take any Extended BASIC program and compile it with no 
changes necessary so that it would run exactly the same only faster. This compiler falls short of that 
ideal, but does come close. 

Following is a short overview of the differences between the compiler and Extended BASIC.

The biggest difference that you will have to deal with is that all numbers are integers from -32768 to 
32767.
Here are some examples showing how the compiled code differs from the XB code:
     32767+1=32768 in BASIC
     32767+1=-32768 in the compiled code
     200*200=40000 in BASIC; -25536 in compiled code because of the integer arithmetic.
If an operation such as dividing or SQR can give a non integer result, then you should use INT in the
BASIC program to be sure that the BASIC and compiled programs function the same.

In Extended BASIC, RND returns a number between 0 and 1, so the INT of RND is always 0. 
Because of this, the following line of code won't work properly in the compiled code:.
     10 IF RND>.5 THEN 100 ELSE 200 
There is a work around built into the compiler that deals with this problem. You have to multiply the 
RND by some number and then INT the result. Instead of the example above you should use:
     10 IF INT(RND*2)=1 THEN 100 ELSE 200
This gives either a 0 or a 1 in both Extended BASIC and the compiled code.

The timing of delays loops has to be modified. FOR I=1 TO 500::NEXT I gives a delay of several 
seconds in XB or BASIC; a fraction of a second in the compiled code. One way to have the same 
delay in both compiled and XB programs is to use CALL SOUND. For a 2 second delay you would 
use CALL SOUND(2000,110,30)::CALL SOUND(1,110,30). Neither XB nor the compiler can 
process the second call sound until the first has finished, so you get the full 2 second delay whether 
in XB or compiled code. Another way is to use CALL LINK(“DELAY”,2000) in XB256.

IF-THEN-ELSE now can use the more versatile Extended BASIC format, Earlier there were some 
limitations when using complex IF-THEN-ELSE statements. Those restrictions no longer apply. 

User subprograms are fully supported with this difference: when using subprograms, the compiler 
will shorten the name to the first 6 letters. You can use longer names as long as the first six letters do
not duplicate another subprogram.  CALL UPDATEWHITE and  CALL UPDATEBLACK would 
not compile properly. CALL UPDATWHITE and CALL UPDATBLACK would be fine, as the 
compiler sees them as UPDATW and UPDATB

Trig functions, LOG and DEF are not supported.

The latest compiler, part of the “Juwel” pachage, lets you use assembly language subroutines. XXB, 
T40XB, T80XB,and The Missing Link are part of the Juwel package. Or you can use your own 
custom assembly routines to support a compiled XB program. See page 17 for more information.  

Page 3



Supported Instructions

Following is a list of the TI Extended BASIC operations supported by the compiler:

Multiple statement lines can be used, with the statements separated with a double colon.
Do not put a double colon at the end of a program line. XB ignores this, but the compiler crashes.

The arithmetic operators + - * / ^  work as they do in XB within the limits of integer arithmetic. 
Parentheses can be used to change the mathematical hierarchy used to evaluate expressions. 
Remember that because of the integer arithmetic, dividing 5/2 will give 2, not 2.5. You can use INT 
in the XB program when dividing (for example INT(5/2) to be certain that XB and the compiler give 
the same results.

The logic operators NOT, AND, XOR, OR work the same as in XB. 

The relational operators   <   >   =   <>   <=   >=   work the same as in XB.

ABS 
ASC 
CHR$ 
DATA   But you cannot GOTO a DATA statement
END 
FOR-TO-STEP             As in XB, the step is optional; +1 is assumed if no step is specified.
GOSUB and GO SUB
GOTO and GO TO     But do not GOTO a DATA statement
INT 
LEN 
LET – is optional just like in XB
MAX
MIN
NEXT
ON-GOSUB and ON-GO SUB
ON-GOTO and ON-GO TO 
POS 
READ 
RESTORE But RESTORE cannot point to a comment; it must point to a DATA statement
RETURN 
RPT$ – the string is truncated if over 255 characters and no warning is given.
SEG$ 
SGN 
SQR – gives same number as INT(SQR(N)) in XB
STOP 
STR$ 
SUB                         only the first 6 letters of the subprogram name are used. 
SUBEND
SUBEXIT
VAL

Page 4



RANDOMIZE can be used, but has no effect; it is done automatically
Integer arithmetic causes RND returns a value of 0. RND is only useful when it is multiplied by 
another number. i.e. INT(RND*6) gives the same results (0,1,2,3,4,5) when compiled as it does 
when used in XB. The order is not important – it can be (RND*6) or (6*RND)

String concatenation (i.e. A$&B$) works the same as in XB. The string is truncated if over 255 
characters but no warning is given.

IF-THEN-ELSE now can use the more versatile Extended BASIC format. 

INPUT works almost exactly like in XB, with the following differences. You can use the optional 
prompt. You can input more than one variable, but you must use the optional prompt to do this, even 
if it is just a question mark.. If inputting more than one variable, data being inputted is separated by 
the first comma the compiler comes to. Quotation marks will not behave as they do in XB. Rather, 
they are simply input as part of the string. You cannot use quotation marks to input leading or 
trailing spaces.
LINPUT works exactly like in XB.
ACCEPT works almost exactly like it does in XB. AT, BEEP, ERASE ALL, SIZE and VALIDATE 
are all supported with one difference:  VALIDATE requires that you provide a string expression.,  
which can be numbers, upper case characters, etc. UALPHA, DIGIT, NUMERIC are not supported. 
If you are using SIZE the computer will give a “honk” instead of a “beep” when it reaches the right 
hand limit.

PRINT works like TI Extended BASIC. You can use TAB, commas, semicolons and colons. Do not 
print more than 20 variables in a print statement. See page 7 for more information.

DISPLAY works just like in XB. You can use AT(row,col), BEEP, ERASE ALL, and SIZE(length) 
as well as TAB, commas, semicolons and colons. DISPLAY USING is not supported. (An XB trick 
to save memory is to use DISPLAY ERASE ALL to clear the screen. This crashes the compiler 
which expects DISPLAY to actually display something. Use CALL CLEAR if you just want to clear
the screen.) With SIZE, using a print list with more than one element will cause the line to be cleared
to column 28. If that is a problem, you can avoid it by  concatenating and displaying a single string.

DIM and OPTION BASE are optional, as is in XB, but using them can reduce the size of the 
compiled program.

ARRAYS: Nexted arrays can now be used. If you have the two arrays DIM A(10),DIM B(10); you 
can now nest the arrays like this: Q=A(B(7)) 

Multiple variables can be assigned in a LET statement. Lines like these are now permissible:
10 A$,B$,C$=”Hello World”
10 IF Z=7 THEN A,B,C=3

Error Messages

Although virtually no error checking is done, there are three conditions that can cause an error 
message to be issued. This can only happen when running the compiled program in XB and when 
using 24K of memory. Running in EA5 or in XB using 32K of memory will simply “quit” if the 
compiled program encounters these errors. 

“BAD ARGUMENT IN 10” - issued if you take the SQR of a negative number. 
“DATA ERROR IN 10” - issued if you read past the last DATA statement. 
 “MEMORY FULL IN 10” - issued if you run out of memory.

Page 5



The following CALL subprograms function just like in Extended BASIC except as noted:

CALL CHAR 
CALL CHARPAT
CALL CHARSET
CALL CLEAR 
CALL COINC
CALL COLOR 
CALL DELSPRITE
CALL DISTANCE
CALL GCHAR
CALL HCHAR 
CALL JOYST     –   Both JOYST and KEY use the same internal keyscan routine. 
CALL KEY         –     If KEY immediately follows JOYST, they will share one keyscan which is a

bit faster. The key units must match. e.g  10 CALL JOYST(1,X,Y)::CALL KEY(1,K,S)
If KEY does not immediately follow JOYST then each does its own keyscan as in XB.

CALL LINK  –   only works with the assembly language subroutines provided by XB256.
CALL LOAD  –  loads values in RAM normally. Can now use assembly subroutines. See page 16.
CALL LOCATE
CALL MAGNIFY
CALL MOTION
CALL PATTERN
CALL PEEK
CALL PEEKV
CALL POKEV
CALL POSITION
CALL SAY   –       some minor limitations. See page 11 for more information. 
CALL SCREEN  – saves the screen color like CALL LINK(“SCREEN”) in XB256
CALL SOUND  –   cannot handle frequencies greater than 32767. (Neither can my ears!)
CALL SPGET
CALL SPRITE
CALL VCHAR 
CALL (user defined subprogram) Only the first six letters of the subprogram name are used.

Some names are reserved for the compiler. The table on page 12 has a list of these.

All the assembly language subroutines in XB256 are supported except for CAT and the IV254 
utilities RUN, RUNL1, and SAVEIV.

REM and ! – All remarks are removed from the compiled program, but you can GOTO a REM 
statement just like in XB. Use of REM will not increase the size of the compiled program.
(Remember that RESTORE cannot point to a remark; it must point to a DATA statement.)

Peripheral access is now supported for DISPLAY, VARIABLE files. See page 13 for more 
information.

From the command mode in Extended BASIC:
CALL LINK("RUN") functions the same as RUN in XB. You cannot use RUN or RUN line # within
a compiled program. The compiler will change RUN to STOP
CALL LINK("CON") functions the same as CON in XB

<FCTN 4> breaks the program as in XB except during INPUT or ACCEPT. <FCTN 4> has no effect
when running in EA5.

Page 6



NOT SUPPORTED – most of these will cause an error when assembling:

ATN
COS
DEF a line with DEF will be omitted by the compiler
DISPLAY USING will compile without error, but will not use image string. 
CALL ERR
EXP
IMAGE a line with IMAGE will be omitted by the compiler
LOG
RUN or RUN line #.- use CALL LINK("RUN") if running the compiled program from XB.

If the compiler finds RUN in the XB program it will substitute STOP. When running 
from XB, STOP makes the compiled program return to XB. When running in EA5, 
STOP returns to the master title screen.

SIN
TAN

The following have no meaning in a compiled program:

BREAK
CON – use CALL LINK("CON") if running the compiled program from XB.
EDIT
LIST
NUM
RES
TRACE
UNBREAK
UNTRACE

The compiler uses a string that can be up to 255 bytes long for processing lines of code. This is 
almost always large enough..However, too many semicolons, commas or colons in a PRINT 
statement can cause the compiler to generate a string longer than 255 bytes. Although the compiler 
does not crash, the line is truncated and the code generated will not run properly. 

10 PRINT A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W 
This compiles properly, but adding one more variable will be too long. You should be safe as long as
there are no more than 20 variables in a print statement.

Embedding SINE values in a string:

Due to the integer arithmetic, trig functions are not supported by the compiler. However, there is a 
way to use them in a program. You can produce a 91 byte long MERGE format program line that 
contains a string with the values for sine from 0 to 90 degrees multiplied by 255, then use SEG$ to 
extract the sine value for any degree from 0 to 90 and convert it to a number with ASC. Such a string
would contain characters that cannot be input from the keyboard, so we have to use a program to 
generate it.

Page 7



A program can be used to generate a merge format file consisting of just one line:
       10000 S$=”a string containing 91 values for sine from 0 to 90, multiplied by 255”

Here is the program:

10 OPEN #1:“DSK3.SINE255”,DI
SPLAY ,VARIABLE 163,OUTPUT 
19 A$=CHR$(39)&CHR$(16)&CHR$ Line number - 39*256+16=10000
(83)&CHR$(36)&CHR$(190)&CHR$ S$ and =
(199)&CHR$(91) string constant; length of string
20 FOR ANGLE =0 TO 90
40 SINE=INT(255*SIN(ANGLE*PI convert from radians to degrees and multiply 
/180)+.5) by 255
50 A$=A$&CHR$(SINE) keep building string
80 NEXT ANGLE
90 A$=A$&CHR$(0) a zero at the end of the string
100 PRINT #1:A$
105 A$=CHR$(255)&CHR$(255)::
 PRINT #1:A$::PRINT #1:A$ Write >FFFF twice to write EOF
110 CLOSE #1

Let's say you wanted to launch a sprite with a velocity (VEL) and at an angle(ANG) between 0 and 
90 degrees. (0 degrees is to the right, 90 degrees is straight up)
The column velocity (CVEL) is given by: VEL*COS(30) and the row velocity (RVEL) is given by: 
-VEL*SIN(30). But what do we do about the missing cosine functions? Well, it turns out that 
COS(angle) is the same as SIN(90-angle), which gives us a solution:

Run the above program, type NEW, then merge SINE255. Then add line 10010 to get the following 
subroutine:

10000 S$=”a string containin
g 91 values for sine from 0 t
o 90, multiplied by 255”
10010 RVEL=INT(-VEL*ASC(SEG$
(S$,ANG+1,1))/255):: CVEL=IN
T(VEL*ASC(SEG$(S$,91-ANG,1))
/255):: RETURN

Save this in MERGE format for future use. You would call this from an XB program like this:

10 VEL=50::ANG=53::GOSUB 10000::CALL MOTION(#1,RVEL,CVEL)

The above subroutine is included on the compiler disk under the file name “SINE255”

The program above beginning with 10 OPEN #1 should have enough comments to give you ideas on
how to write something similar that can generate strings containing character definitions, sprite data, 
or sound lists. You should know that the strings generated contain characters that cannot be input 
from the keyboard. These will run fine, but XB will complain if you try to edit the line. Besides 
speed, one advantage to using a string like this for defining characters is that the string is more 
compact. It uses 8 bytes per character while the normal CALL CHAR uses 16 bytes per character. 
But you lose the ability to easily edit the line or even to understand what is in it. The COMPRESS 
utility in XB256 automates the creation of this type of DATA line.

Page 8



Disk Access
Disk and other peripheral access is now supported with some limitations:
DISPLAY, VARIABLE is the only file type recognized, but you can use any length desired from 
DV1 to DV254.

Up to three files can be open at a time. You must use #1, #2, or #3 – do not use other file numbers.

You can only use colons in a print statement. Commas and semicolons will not save as in XB.
10 PRINT #1:”Now, is, the, time   “ will print the entire string contained in the quotes.
20 PRINT #2:”Hello”:”World” or 20 PRINT #2:”Hello”::PRINT #2:”World” are equivalent.
Use LINPUT for reading strings – INPUT will be treated as LINPUT if used
LINPUT will read the entire entry including any ASCII characters (like in XB)
Use INPUT for reading numbers (like in XB)
You must specify INPUT or OUTPUT when opening a peripheral for reading or writing files.
DELETE device-filename is supported but does not work with FIAD on Classic99

Error checking with peripherals

Error checking should be set up just like in XB with the following limitations:

ON ERROR line number - transfers control to the desired line number
If you are not using ON ERROR and an error is encountered:
-If running from an XB loader, the program will end and return to the line editor. No disk error 
message is printed. 
-If running as an EA5 program the program will return to the master title screen.

RETURN line number – this only works to return to a specific line number. Do not use RETURN or 
RETURN NEXT

Other peripheral devices should work if they can use DISPLAY VARIABLE format.

MODIFYING THE XB LOADER
EA5 programs cannot be changed, but there are modifications you can make to the XB program 
created by the loader. It consists of one XB line followed by the compiled program embedded in a 
way that is is invisible to the user. Here is the line of XB code:
10 CALL INIT :: CALL LOAD(8192,255,158):: CALL LINK("RUN")
This is a legal XB line which can be modified as desired by adding a comment or any legal XB 
command. You can add additional lines of code if desired, as long as you do not resequence the 
program..   

If you want to pass a value, such as the timing for a loop, you can add to line 10 CALL 
LOAD(16383,VALUE)::CALL INIT etc. When the compiled program runs the first thing it does should 
be CALL PEEK(16383,VALUE) and now VALUE is available to the compiled program. 

When running from XB, the compiled program is treated as a giant assembly language subroutine, 
invoked by CALL LINK(“RUN”). When the compiled program ends or F4 is pressed, control is 
returned to XB. To to pass a value back to XB the compiled program can CALL LOAD(16383,VALUE).
You would add to the loader: 20 CALL PEEK(16383,VALUE). When the compiled program ends, 
control returns to XB which executes line 20 and retrieves the value placed there by the compiled 
program. 

Page 9



With CALL LOAD and CALL PEEK you can easily pass values from XB to a compiled program, 
from a compiled program back to XB, or from a compiled program to a chained compiled program. 
When the entire compiled program is in high memory, addresses from 9728 to 16383 are available. 
When the runtime routines are in low memory, the amount of free memory depends on how many 
extras (XB256, Star Wars text crawl, lower case with descenders, disk access, speech.) you use. The 
loader reports what addresses are safe to use.

You can also use CALL HCHAR to store a value and CALL GCHAR to retrieve it.

 Besides RUN there are two other options for starting the compiled program. 

CALL LINK(“RUNEA”) - The compiled program behaves exactly the same as if you were running
from EA5. The character sets are loaded and the colors are set. The only real difference is that no F4 
scan is performed, so you can't accidentally break the program, and it will run a very tiny bit faster.

When RUN is performed, one of the things it does is to initialize the XB256 screen2 by loading the 
standard character patterns and colors, and then it starts the compiled program. If you are chaining 
compiled programs and wish to preserve the Screen2 graphics you can:

CALL LINK(“RUNV”) - This starts the compiled program just like RUN without initializing the 
Screen2 graphics.

HOW TO CHAIN COMPILED PROGRAMS

Here's a ridiculously simple program that chains to another equally simple program:
10 PRINT “Program One”::RUN “DSK1.PROGRAM2”    (saved as PROGRAM1)
10 PRINT “Program Two”    (saved as PROGRAM2)

Is there any way to do the same thing in a compiled program? Not directly, because RUN cannot be 
used within the compiled code. But there is a way to do it. Here is a quick demonstration of how to 
do this. Compile these two programs:
10 PRINT “Program One” (compiled and saved as PROGRAM1-X)
10 PRINT “Program Two” (compiled and saved as PROGRAM2-X)
Now add line 20 to the XB portion of PROGRAM1-X
10 CALL INIT :: CALL LOAD(8192,255,158):: CALL LINK("RUN")
20 RUN “DSK1.PROGRAM2-X”
When the compiled PROGRAM1 ends, it returns to XB. Since the XB program is still running, it 
goes on to the next instruction which is RUN “DSK1.PROGRAM2-X”

If PROGRAM1 modifies the screen2 screen, character patterns, or colors and you want to preserve 
them in PROGRAM2, then you should change line 10 of PROGRAM2-X from    CALL LINK(“RUN”) 
to CALL LINK(“RUNV”). Also, to avoid scrambling screen2, PROGRAM2-X must be saved in IV254 
format. Long programs do this by default, but if it is shorter than about 13K, first save PROGRAM2-
X normally, then start up XB256 and type:
OLD DSK1.PROGRAM2-X
CALL LINK(“SAVEIV”,“DSK1.PROGRAM2-X”)

Page 10



ADJUSTING THE TIMING IN A GAME PROGRAM

One frustration in developing an XB program intended for compilation is that is can be rather tedious
to adjust the speed of the gameplay. You try a value in a FOR/NEXT loop, save the program, 
compile, assemble, load, only to find that it is too fast. Then you go back to XB, try a larger value, 
repeat the process; find that it is still too fast, try another value, etc, etc.

If you are using XB256 to develop the game there is an easy way to streamline the process. Let's say 
you are working in screen2. All you have to do is set up a “hot key” to go to a diagnostic menu in 
screen1, where variables can be modified without disturbing screen2. When done simply return to 
screen2 and resume where you left off.

In the simple demo program below, lines 100-200 define a ball and put it on the screen. The ball can 
be moved with the ESDX keys. If you press <Fctn 1> line 160 will go to line 210 where the delay 
value can be modified. After pressing <Enter> control returns to the main program loop with the 
modified delay value.

100 CALL LINK("CHAR2",65,"3C7EFFFFFFFF7E3C"):: R=12 :: C=16 :: DLY=1
110 CALL LINK("SCRN2")
120 CALL HCHAR(R,C,65)
130 FOR I=1 TO DLY
140 CALL KEY(0,K,S):: IF S=1 THEN 160
150 NEXT I
160 IF K=3 THEN 210
170 RN=R-(K=69)*(R>1)+(K=88)*(R<24):: CN=C-(K=83)*(C>1)+(K=68)*(C<32)
190 IF RN=R AND CN=C THEN 130
200 CALL HCHAR(R,C,32):: R=RN :: C=CN :: GOTO 120
210 CALL LINK("SCRN1"):: CALL CLEAR :: INPUT "DELAY VALUE? ":DLY :: GOTO 110

SPEECH

Speech has been added to the compiler. CALL SPGET works exactly like it does in XB. There are 
some minor differences in CALL SAY. The syntax is a bit more restrictive. Do not use leading 
spaces; only use one space between words; and do not append punctuation to words. 
Unlike in XB, .(period) +(positive) and -(negative) are pronounced.

Commas can be used for a short pause both in XB and compiled like this: CALL SAY(“HELLO ,  , 
THERE”. More than one comma can be used for a longer pause. 

If a word is not found in the speech synthesizer's vocabulary, Extended BASIC will sound out the 
letters of the word. The compiler simply skips the word. If you want to say the letters “A B C” you 
should put spaces between the letters. CALL SAY(“A B C”) works the same in XB and compiled. 

An undocumented feature of XB is the use of # to consider a phrase as one word. Neither TEXAS 
nor INSTRUMENTS is in the speech synthesizer's vocabulary, but TEXAS INSTRUMENTS is. It 
can be spoken with  CALL SAY(“#TEXAS INSTRUMENTS”) 
This also works with CALL SPGET(“#TEXAS INSTRUMENTS”,A$).

Page 11



Do not use any of the following as a name for a user subprogram:

The letters NC, NV, NA, SC, SV, SA, L followed by a number, or any of the names below:
ABS
ACCEP1
ACCEP2
ACCEPT
ACCSCP
ADD
AMATCH
AND
ASC
ASTRN1
ASTRN2
ASTRNG
AT
AT1
AT1A
AT2
AT3
AT4
ATPNTR
BACK
BEEP
BEEP1
BKINT
BKPDSR
BLWPWS
CALL
CALL1
CALL2
CALLS1
CALLS2
CALLSB
CEQ
CEQ1
CGE
CGT
CHAR
CHAR2
CHAR2A
CHAR2B
CHAR2C
CHAR2E
CHARP1
CHARP2
CHARPA
CHARPB
CHARSE
CHARTB
CHPAT2
CHRS
CHRSE1
CHRSE3
CHRSED
CHRSRT
CHSET2
CHSET3
CHSETD
CHSETL
CHSETZ
CLE
CLEAR
CLEAR1
CLEAR2

CLLADR
CLOSE
CLOSE2
CLRLN
CLRLN1
CLRLN2
CLRSC1
CLRSCN
CLT
CLT1
CMPAR1
CMPAR2
CMPAR3
CMPAR4
CMPAR5
CMPAR6
CMPAR7
CMPAR8
CMPARE
CNE
CNS
CNS1
CNS1A
CNS2
CNS3
CNS7
CNS8
CNS9
CODE
CODEND
COIALL
COINC
COLON
COLOR
COLOR1
COLOR2
COLORA
COLORC
COLORD
COMDLY
COMMA
COMMA1
COMMA2
COMMA5
COMMA6
COMMA7
COMMA8
CON
CONCA1
CONCA2
CONCA3
CONCA4
CONCA5
CONCAT
CRAWL
CRSPOS
CSN
CSN1
CSN2
CSN3
CSN4
CSN5

CWRIT1
CWRIT2
CWRIT3
CWRIT8
CWRITE
CYAN
DATPNT
DELAY
DELAY1
DELAY2
DELS1A
DELSP1
DELSP2
DELSPR
DERRLN
DFWND1
DFWNDW
DIRECT
DISP3B
DISP3C
DISP3E
DISP3F
DISP4D
DISP4E
DISPL1
DISPL2
DISPLA
DISPLY
DISTA1
DISTAN
DIVID1
DIVID2
DIVID3
DIVID4
DIVID5
DIVID6
DIVIDE
DLINK1
DLINK2
DLINK3
DLY12
DLY42
DONE
DONEX
DR3LB
DRCTL2
DRCTL3
DRCTL4
DRCTL5
DSKBUF
DSRAD1
DSRADD
DSREND
DSRLNK
DSRWS
DWIND
DWNROW
EA5
EA5B
EA5B1
EA5C
EA5D

EA5WS
EAINT
EARLRT
EARLYC
ELSS
ELSS1
ENDCC
ENDIF
EOF
EOF1
EOF2
EOF3
EORT
ERRLN
ERRXB
ERROR
ERROR1
ERROR5
ERRRPT
FAC
FILERR
FOR
FORX1
FORX2
FORX3
FORX4
FORX5
FREEZE
FRSTDT
FRSTLN
FRSTST
GARBA1
GARBA2
GARBA3
GARBA4
GARBA5
GARBA6
GARBAG
GASIZ1
GASIZ2
GASIZE
GCHAR
GET0
GET1
GET2
GET3
GET4
GETAR
GETAR1
GETAR2
GETARR
GETSTK
GLINK1
GLNKWS
GODSR
GODSR1
GODSR2
GODSRE
GOSUB
GOSUB1
GOSUB2
GOTO

GPBUFF
GPLCHR
GPLLNK
GPLWS
GR4
GR4LB
GR6
GSTAT
GTAR1A
GTAR1B
GTPABA
GTSPNO
GXMLAD
H0360
H10
H2320
H2C00
H4000
H8000
HCHAR
HCHAR1
HCHAR2
HCHAR3
HCHAR4
HCHARX
HCHARY
HCHGAD
HEADER
HEXDE2
HEXDE3
HEXDEC
HIGH
HILIT1
HILITE
HX0010
HX0018
HX001E
HX0051
HX0300
HX6080
HX8000
HX8080
HXFFF0
IF
IF2
IF3
IF4
INP13A
INPTN1
INPTN2
INPTN5
INPTNL
INPU10
INPU11
INPU12
INPU13
INPU14
INPU4A
INPU4B
INPU5A
INPUT
INPUT2

INPUT3
INPUT4
INPUT5
INPUT6
INPUT7
INPUT8
INPUT9
INPUTN
INT
INVID
INVID1
INVTX1
INVTXS
IRND
JOYST
JSTADR
KEY
KEY1
KEY2
KEY3
KEYBP
KSC1
KSCAN
LASTDT
LASTLN
LCDEFS
LDCLR
LDCLR1
LDGADD
LDRGST
LEN
LEN1
LET
LET1
LET2
LIMZRO
LINPTN
LINPUT
LOAD
LOAD1
LOADLP
LOADSP
LOCATE
LOW
MAGNIF
MATCH
MAX
MAX0
MAX2
MAX3
MIN
MINUS
MLTPLY
MONIT3
MONIT4
MONIT5
MONITG
MONITR
MONWS
MOTION
NAMLEN
NBR

NEXT
NEXT1
NEXT10
NEXT11
NEXT12
NEXT13
NEXT2
NEXTSP
NOCOI1
NOCOIN
NOPLAY
NOT
NOWNDW
NULLST
NXTPHR
NXTSTR
OLDCHR
OLDINT
ONE
ONGOS1
ONGOSU
ONGOTO
OPEN
OPEN1
OPENBK
OPTBAS
OR
OUT
PAB
PABADR
PATTER
PEEK
PEEK1
PI
PLAY
PLYR1
PLYR1A
PLYR1B
PLYR2
POS
POS0
POS1
POS2
POS3
POSITI
PRIN7B
PRIN9A
PRINB3
PRINB4
PRINBK
PRINT
PRINT2
PRINT3
PRINT4
PRINT5
PRINT6
PRINT7
PRINT8
PRINT9
PRINTN
PRN5A
PRNTN1

PRNTN8
PRNTN9
PUTSTK
QMARK
RAND1
RAND2
RAND3
RAND4
RAND5
RANDBK
RDSCR1
RDSCR2
READ
READ2
READBK
READER
READSP
RESTO1
RESTO2
RESTOR
RETUR1
RETURN
RGSTRS
RND
RPTER1
RPTER2
RPTERR
RPTS
RPTS1
RPTS2
RPTS5
RTN
RTNAD
RUN
RUN1
RUN10
RUN2Q
RUNEA
RUNEA5
RUNV
SAY
SAY1
SAY1A
SAY1T
SAY2
SAY3T
SAY4T
SAY5T
SAY6T
SBTRCT
SC1CLR
SC1DC
SC2CLR
SC2DC
SCPXD2
SCPXDN
SCPXL2
SCPXLF
SCPXR2
SCPXRT
SCPXS2
SCPXS4

SCPXS8
SCPXSB
SCPXU2
SCPXU3
SCPXU4
SCPXU5
SCPXUP
SCREE1
SCREE2
SCREEN
SCRENE
SCRLA2
SCRLAT
SCRLBK
SCRLDN
SCRLF1
SCRLF2
SCRLF4
SCRLFS
SCRLLF
SCRLP
SCRLRT
SCRLS1
SCRLUP
SCRN1
SCRN1A
SCRN1B
SCRN2
SCRN2A
SCRN2Z
SCRNPT
SCRNRT
SCROB
SCROB4
SCROB5
SCROLL
SCRUP1
SCRUP2
SCRUP3
SCRUP4
SCRUP5
SEARC1
SEARCH
SEGS
SEGS1
SEGS2
SEGS3
SEMI
SETADR
SETEQ
SETSI1
SETSI2
SETSI4
SETSI6
SETSI7
SETSI8
SETSI9
SETSIZ
SGN
SGN1
SGN2
SIZE

SIZLTH
SLIST1
SLIST2
SLIST3
SLIST4
SLIST5
SLOFF
SLOFF1
SLOFF2
SLP2
SLP2A
SNDOFF
SOUND
SOUND1
SOUND2
SOUND3
SOUND4
SOUND5
SOUND6
SOUND7
SOUND8
SPACE1
SPACES
SPCHRD
SPCHWT
SPCOL
SPDIS1
SPDIS2
SPDIST
SPDOVR
SPEAK
SPEAK1
SPGET
SPGET1
SPGET2
SPGET3
SPGET5
SPGFLG
SPINI1
SPINI2
SPINI3
SPINIT
SPLOC
SPLOC1
SPPAT
SPPAT1
SPPAT2
SPRIT1
SPRIT2
SPRIT3
SPRITE
SPRMO
SPRMO1
SQR
SQR1
SQR2
SQR5
SQRERR
STAR0
STAR1
STAR10
STAR2

STAR3
STAR4
STAR5
STAR6
STAR7
STAR8
STAR9
STKPNT
STOP
STRN
STRPAD
STRS
STRST1
STRST2
STRST3
STRST4
STRSTR
SUBEN1
SUBEN2
SUBEN3
SUBEND
SUBEXI
SWPPA1
SWPPAD
SWPSC1
SWPSC3
SWPSC4
SWPSCR
SYNC
SYNC1
SYNTH
TAB
TAB1
TAB2
THAW
TYPE
VAL
VALID
VCHAR
VCHAR1
VLDRO1
VLDRO2
VLDRO3
VLDRO4
VLDROU
VLDSTR
VMBR
VMBR1
VMBR1A
VMBR1B
VMBR2
VMBR5
VMBW
VMBW1
VMBW1A
VMBW1B
VMBW2
VMBW5
VMWLP1
VMWLP2
VRD
VREAD

VREAD1
VSB4
VSBR
VSBR1
VSBR2
VSBW
VSBW2
VSBW96
VSCR1A
VSCR1Z
VSCR2A
VSCR2X
VSCR3A
VSCRL1
VSCRL2
VSCRLB
VSCRM1
VSCRM2
VSCRM4
VSCRMU
VSCROL
VSFLAG
VWA
VWRITE
VWTR
VWTR1
WAIT
WAIT1
WAIT2
WFRSTR
WHIGHT
WINDO1
WINDO2
WINDO3
WINDOW
WKSP
WKSP1
WLASTR
WLCOL
WRCOL
WWIDTH
XB255A
XBEA5
XBRTN
XBRTN1
XBRTN2
XBRTN3
XMLRTN
XOR
XPONE1
XPONE2
XPONE6
XPONE8
XPONE9
XPONEN
XPONEX
XPONEY
XPONEZ
XTAB27
ZERO

Page 12



In case of trouble...

Here are some steps that you can take to try to sort things out if there is a problem with the compiler.

Sometimes the compiler does not like one or more of the statements in the XB program. Normally it 
will display "L10" (or whatever the first line number is). If successful in compiling that line it will 
then display “L20” and so on until it is done. If it gets stuck on a line number then there is something
in that line that it doesn't like. Check the XB program and try to see which statement is unsupported. 

The compiler will report if it was able able to successfully compile your XB program. If so it will 
return to the menu where you can choose to assemble the code. The assembler might issue an error 
message during the assembly process. If so then the error is probably in the source code file the 
compiler just made, not in the runtime routines. The message will be something like this: 
undefined symbol 0141. This tells you that there is something wrong in line 141 of the 
compiled source code. Examine it to see if you have used an unsupported statement or if there is 
something that doesn't look right. This is another good reason to use Classic99, because the files are 
in windows format and can be opened and viewed with a text editor such as Notepad. Except for      
B @RUNEA5 there should be nothing but DATA statements, something like the following compiled
code:
       DEF RUN,CON
RUNEA  B @RUNEA5
FRSTLN
L100
FOR1
       DATA FOR,NV1,NC1,NC2,ONE,0,0
       DATA COLOR,NV1,NC3,NC4
       DATA NEXT,FOR1+2
L110
       DATA DISPLY,NC1,NC5,SC1,NC6,NC7
L130
       DATA AT,NC8,NC9
       DATA SIZE,NC3
       DATA ACCEPT,SV1

LASTLN DATA STOP
- - - - (lines are omitted)- - - -
SC0
SC1    DATA SC1+2 
       BYTE 9,98,97,99,107,103,114,111,117,110
       EVEN
SV0
SV1    DATA 0 Z$
- - - - (lines are omitted)- - - -
       COPY "DSK1.RUNTIME1"
       END
The code the compiler creates should be understandable when compared to the original XB program.
Look for a missing DATA statement or something that doesn't look right. If the assembler gives a 
line number you should be able to find the error easily. 

Page 13



USING ASM994A WITH CLASSIC99 AND XBGDP

Be sure your computer is set up so it will show file extensions. If you do not know how to do this, do
a search for “How to show file extensions in Windows 10/8/7”

Set up the Game Developer's Package as described in Using XBGDP.  DSK1 should be the folder 
called ISABELLA. The runtime routines and Asm994a.exe are already in this folder. Win994a is a 
nice emulator for the TI99 that comes with a huge amount of cartridge and disk software. If you 
want to try it out, the latest version can be found at www.99er.net   on the home page. It is on the left 
under emulation.

Because Assm994a is a windows program it does not know anything about DSK1, DSK2, etc. The 
most foolproof way to use it is to have the source code created by the compiler, the runtime routines 
and Asm994a in the same folder. These are already in DSK1 (ISABELLA), so let's leave them there,
at least for our preliminary testing. Open the ISABELLA folder, then right click on Asm994a.exe 
and create a shortcut. Drag and drop the shortcut to your desktop. 

Let's test it by recompiling HELLO. The steps for compiling HELLO were described in Using 
XBGDP. Follow them up to the point in the compiler where you are asked:
Using Asm994a? Press Y and Enter, then Enter twice more to Proceed.
When the compiler is finished and returns to the main menu it knows you will be using Asm994a, so 
it bypasses the Assembler and points to Loader.

Now it's time to try out Assm994a. Windows 10 will look a little different from the XP screen shots 
shown here, but the steps are exactly the same. 

Start by adding a Source File.

click here.

The folder should be ISABELLA in the window that opens. If it is not, then:

click here

and select the ISABELLA folder in the new menu. And click on Open.

Page 14

http://www.99er.net/


When the ISABELLA folder is opened you will see a menu with all the text files in the folder.

First click here.

The runtime files, compiled 
source files, and Asm994a 
should be on the same disk

then  click here. 

The menu closes when you choose a file name.

Under Assembler Options click Def Regs and Produce HEX Obj File, then Start Assembly.

Click here.

Click here.

The Object File is 
automatically filled in for 
you with the
.obj extension

Click here to 
Start Assembly

If all goes well you see the message Assembly Complete – Errors: 0, Warnings: 0 

Page 15



Click on the Classic99 window and you are back to familiar territory. 
Press Enter for the LOADER then press Enter at the prompts:
DSK1.HELLO.OBJ
CALL LINK(“EA5,”DSK1.HELLO-E”)
SAVE DSK1.HELLO-X
RUN  Set CPU speed to normal and press Enter.

You can see there is some set up to use Asm994a the first time, and you may wonder whether it's 
worth it when a just few keystrokes will have the TI Assembler up and running.

Let's find out. In developing a program, usually you'd be making a number of changes to the XB 
program and then recompiling. Let's try changing HELLO. Break the compiled program with Fctn4, 
Quit, press a key, press 2 for XB. The menu comes up pointing to EXTENDED BASIC. Press Enter,
and press Enter again to load HELLO. Change the text in line 10.
10 A$=” Hello World! How are you doing???”
Type SAVE and follow the prompts to recompile. When the menu comes up pointing to LOADER 
don't forget that you need to assemble. Asm994a is already filled in for you and you just have to 
click Start Assembly. Then back to Classic99 to load, save and run the program.

See how much faster that is? Assembling the second time only took a few seconds.

As noted earlier, this is the easiest way to use Asm994a, but I do not particularly like the way DSK1 
gets cluttered up when using this method. Once you are familiar with using Asm994a, I would 
suggest setting up a different disk for program development. I use DSK4 with the windows name 
WorkingDisk, but the disk number can be from 2 to 9 and the windows folder can be any name you 
want. You have to copy the runtime routines and Asm994a to DSK4. (WorkingDisk) This is where 
you will have the XB or XB256 source programs, as well as all the compiled files. Because it is in a 
new location, be sure to delete the old shortcut, then make a new shortcut to Asm994a and move it to
your desktop.

Page 16



COMBINING ASSEMBLY ROUTINES WITH COMPILED XB CODE

The latest version of the XB Game Developer's Package, Juwel, lets you develop hybrid programs that use 
assembly language support routines along with compiled BASIC code. Since the assembly routines are not 
part of the compiler, this offers great versatility for combining custom assembly routines with compiled XB 
code. 

Normally in Extended BASIC, the XB program is located in the 24K “high memory” and assembly routines 
are located in the 8K “low memory”. Compiled programs use memory the same way: the compiled XB 
program is placed in high memory, and the assembly support is placed in low memory. The assembly 
routines remain virtually the same. They need some minor changes to the routines that pass string and 
numeric variables, and they must return to the compiled program, not to XB. 

There are some minor limitations. The compiled XB code can only be loaded to the 24K of high memory. 
You cannot use the compiler option to put the runtime routines in low memory. This means the maximum 
program size is smaller than when using just compiled XB. Since all numbers in a compiled XB program 
must be integers, it follows that any numbers passed to or from the support routines must also be integers. 
Another difference is in how NUMASG or STRASG return variables to the XB program. When running in 
XB, you can enclose a variable in parentheses to keep it from being returned to the calling program. That 
option will not work in compiled code. The parentheses are ignored and the variable will always be returned.
----------------------------------------------------------------------------------------------------------------------------
At this point, some explanation of how the compiler works is necessary. Remember that XB256 is built into 
the compiler. When the compiler encounters any of the XB256 CALL LINK routines, it strips out the LINK 
and treats it like a CALL. For example, the compiler would treat CALL LINK(“DISPLAY”,1,1,”Hello 
World”) as if it were CALL DISPLAY(1,1,”Hello World”) So it would seem that it would not be possible to
use any CALL LINK unless it were built into the compiler, 

But there is a way around that. The subroutine names can be converted to lower case alphabetic characters. 
This lets the compiler know it is a user CALL LINK that is not built into the compiler, and so it treats it 
differently. There is an assembly program (UC2LC) that converts all the assembly subprogram names in an 
XB program to lower case. A similar program (LC2UC) converts them back to upper case to rescue you 
when (not if!) you unintentionally convert them to lower case.

Another assembly program (FIXAL) will modify the assembly support routines to be compatible with the 
compiler. It converts the assembly subprogram names in the DEF table to lower case, modifies NUMASG, 
NUMREF, STRASG, STRREF, CSN, and CNS, and changes the return to XB so it returns to the compiler 
instead. It then creates an XB loader that has the modified assembly code embedded.  
----------------------------------------------------------------------------------------------------------------------------
As always, before trying to compile, you should always thoroughly test the XB program and its assembly 
support. There are a number of ways to load the assembly routines to low memory for testing. To load your 
own own custom assembly routines, you would use CALL LOAD(“DSKn.FILENAME”). If you are using 
XB 2.9 G.E.M., you can load XXB, T40XB, T80XB, or The Missing Link directly from the menu. Or you 
can use the disk based versions of these or similar utilities. These use an XB loader with embedded code; 
RUN “DSKn.FILENAME” will copy the assembly routines to low memory. Once the assembly routines are 
loaded you can load or write the XB program.

When your hybrid XB/assembly program is thoroughly tested, it is time to create the compiled program.

Start by modifying the assembly support routines so they can work with the compiler. (If you are using 
XXB, T40XB, T80XB, or The Missing Link this has already been done. The files are XXBC, T40XBC, 
T80XBC and TMLC on the Juwel disk). To modify your own assembly routines, put the JUWEL disk in 
drive #1, choose Extended BASIC, then type:

Page 17



NEW
CALL INIT
CALL LOAD(“DSKn.ASSEMBLY.OBJ”)    or  CALL LOAD(“DSKn.ASSEMBLY-O”) on a real TI99
CALL LOAD(“DSK1.FIXAL”)
CALL LINK(“X”)   starts FIXAL to modify the assembly routines and creates an XB loader.
SAVE DSKn.ASSEMBLYC it is a good idea to append C so you know this is for the compiler.

Once the assembly routines are modified and saved, the compilation process is much like compiling an 
ordinary XB program. Here is a walk-through of how to write and compile a simple XB program for The 
Missing Link. This program computes a random angle, centers the turtle, draws a polyspiral, then repeats. 

10 CALL LINK("CLEAR"):: ANG=RND*90+90 :: CALL LINK("PUTPEN",92,120,0)
20 FOR I=1 TO 130 :: CALL LINK("FWD",I,ANG):: NEXT I
30 GOTO 10

Load The Missing Link, then enter the above program and test it out. When you know it works:
SAVE DSK2.POLY
With the JUWEL disk in drive #1, quit or BYE to the color bar screen, and press 2 for Extended BASIC. 
When the Juwel menu is displayed, select Extended Basic.
OLD DSK2.POLY loads the polyspiral program to be compiled. Add this line.
1 CALL LINK(“TML16”) initializes The Missing Link for 16 colors
CALL LOAD(“DSK1.UC2LC”) this changes the upper case characters in the A/L
CALL LINK(“X”) subprogram names to lower case characters.
List the program to verify that the subprogram names are in lower case, then type SAVE.
You get the prompt “SAVE DSK2..POLY” It is a good idea to add “L” to show that it is lower case.
Keep pressing Enter at the prompts until you come to the loader. (RUNTIME cannot be in low memory.)
At the prompt “Using Assembly Support? N” type Y, then Enter

You are prompted for the filename
Press Enter or input a different file

You are prompted for the assembly routines
TMLC is a version of TML modified for the compiler

Press Enter when the cursor appears

EA5 program was saved as POLY-E

Press Enter twice to save as XB program

Page 18



Now you can type RUN to test it out.

One more step is needed if you want to load the program from XB. The XB program must be in two parts. 
You just saved the compiled XB part as POLY-X. Now let's create the first part . 
OLD DSK1.TMLC
Modify line 10:
10 CALL INIT :: CALL LOAD(8192,255,172):: CALL LINK("X"):: RUN "DSK2.POLY-X"     Then:
SAVE DSK2.POLY-C
When you run POLY-C it loads the TMLC routines to low memory, then loads and runs POLY-X.

INITIALIZING THE MISSING LINK, T40XB, AND T80XB
For The Missing Link, the first line executed must be CALL LINK(“TML16”) or CALL LINK(“TML2”). 
This initializes TML and does CALL FILES(2). If returning to XB, the last line executed should be CALL 
LINK(“GRAFIX”) to set the normal XB graphics mode.
For T40XB or T80XB, the first line executed must be CALL LINK(“T40XB”) or CALL LINK(“T80XB”), 
and if returning to XB, the last line executed should be CALL LINK(“G32”) to reset the XB graphics mode.

MORE INFORMATION ABOUT FIXAL
FIXAL looks for the following byte sequences. If found they will be modified for compatibility with the 
compiler.
>0460,>006A B @>006A back to XB
>0460,>0070 B @>0070 back to XB
>0420,>2018,>12B8 BLWP @XMLLNK CFI
>0420,>2018,>0020 BLWP @XMLLNK CIF
>0420,>2018,>11AE BLWP @XMLLNK CSN
>0420,>2018,>0006 BLWP @XMLLNK CNS
>0420,>2018,>0026 BLWP @XMLLNK SCROLL

XMLLNK should only be accessed with BLWP @XMLLNK. Coding in any other way will be ignored by 
FIXAL. However, this offers a workaround if an assembly subprogram needs to use one of the unmodified 
XMLLNK routines. For example, the disk catalog program in T40XB and T80XB reads a floating point 
number from disk, converts to integer using CFI, and prints it on the screen. The following code works in 
XB, but the modifications by FIXAL bypass CFI. This keeps it from working properly when compiled. 

BLWP @XMLLNK
DATA >12B8 cfi

I coded this differently so that FIXAL does not find and modify it. Now it works as expected.
LI R8,XMLLNK
BLWP *R8
DATA >12B8 cfi

The return to XB must be done with B @>006A or B @>0070.
LWPI >83E0
B @>006A

FIXAL changes this so the return goes to the compiled code. If you had some reason to return to the XB 
interpreter instead of compiled XB, you can modify the code so that FIXAL does not find and modify it.

LWPI >83E0
LI R1,>006A
B *R1

Any XB program is erased when FIXAL creates the loader program, so be sure to save your work.

Page 19



DEALING WITH ERRORS

Compiled XB code cannot report errors, but that can be done when using assembly routines. The standard 
BLWP @ERR gives some information, but it is best to use a custom error handling routine that works with 
EA5 programs and lets you use ON ERROR line number. This is especially useful when the user must enter 
the name of a file. If the name is wrong the error routine can print a message, then return. This is much 
better than simply ending the program when there is an error. You must use RETURN line number. The 
error handling routine described below is already built into T40XBC, T80XBC, and TMLC

The Missing Link program below asks for the name of a picture file to load. If there is an error, it will issue 
an error message, then return to line 100 where it prompts for the file name.

100 ON ERROR 200 :: CALL LINK("INPUT",1,1,P$):: CALL LINK("LOADP",P$)
120 CALL KEY(0,K,S):: IF S<1 THEN 120 ELSE CALL LINK("CLEAR"):: CALL LINK("COLOR",2,8):: GOTO 100
200 CALL LINK("CLEAR"):: CALL LINK("PRINT",100,1,"BAD FILE NAME, TRY AGAIN"):: RETURN 100

This works fine in XB. To enable this type of error reporting in compiled code,  three steps must be taken. 

1 – the ERR vector at >2034 must point to a new workspace and the new error handling code. I added the 
code below to the subprogram used in the first line of the program to initialize the video memory.

LI R0,BUFFER+100 ERR cannot use same WS as VSBW
MOV R0,@>2034
LI R0,ERRORX change ERR to point to my error routine
MOV R0,@>2036

2 – Where BLWP @ERR is used, it must be changed to use the messages in the new error handling routine. 
Search for BLWP @ERR and put the new error message into R0.

RPTERR LI R0,IOERR was LI R0,>2200    FILE ERROR
BLWP @ERR

3 – New error handling code must be added to the assembly routines. Below is the error handling routine 
used in T40XB, T80XB and TML. This prints an error message unless you are using ON ERROR line 
number. 

ERRORX MOV @>8314,R8 Move R10 of compiler WS into R8. LNKPTS
MOV @4(R8),R8 3rd word in this table into R8 contains ERRLN
C @2(R8),*R8 does ERRLN=DERRLN (default error = end of program)
JEQ ERRORN yes, report error and end program

ERRORY MOV *R8,@>831A ON ERROR was used, get line number into R13
MOV @2(R8),*R8 o n error is only used once, restore default
CLR @>83AA compiler wants this to be zero 

*here TML, T40XB, and T80XB have code to restore the graphics mode
B @>006A FIXAL changes this to return to compiler

ERRORN MOV *R13,R6 mov R0 calling to R6
PRERRM LI R0,>02A1 lower left of screen
PRERR1 INC R0

MOVB *R6+,R1
JEQ ERRORY
AI R1,>6000
BLWP @>2020 VSBW print error message

Page 20



JMP PRERR1

IOERR TEXT 'I/O ERROR'
BYTE 0

BVERR TEXT 'BAD VALUE'
BYTE 0
EVEN

RUNNING COMPILED & ASSEMBLY PROGRAMS USING AN XB MENU

There is a trend these days to save compiled programs as EA5 and convert them into cartridges. This makes 
a nice, neat package and works fine for self contained programs. The loader gives you the option to save a 
program as EA5.

CHAINING PROGRAMS

On the other hand, saving a compiled program as XB has other advantages. Remember that, as far as XB is 
concerned, the compiled program is just a large assembly language subroutine. Because of this, it is possible
to write a menu program that loads from disk and runs in XB, and use it to select different compiled 
programs on the disk. When a compiled program ends it returns back to the XB interpreter. If the next 
statement in the XB program is RUN "DSK1.MENU" then the menu program is be loaded and you can use 
it to choose a different compiled program. 

Below is a short tutorial showing how to do this. This demo runs two programs that use compiled TML. One
program draws a polyspiral; the other draws circles using CALL LINK("PR") to make an interesting 
graphics demo. DSK1 is used throughout.

First the menu program:

10 CALL CLEAR :: PRINT "PRESS:":"1 - POLYSPIRAL":"2 - CIRCLES WITH PENREVERSE"
20 CALL KEY(0,K,S):: IF K=49 THEN CALL CLEAR :: RUN "DSK1.POLY-X"
21 IF K=50 THEN CALL CLEAR :: RUN "DSK1.CIRCLES4-X"
22 GOTO 20

Save this as DSK1.MENU

Here are the two programs for The Missing Link. The first is POLY and the second is CIRCLES4.

10 !CALL LINK("tml16")
20 FOR I=1 TO 500 :: CALL LINK("FWD",I,123):: NEXT I
30 CALL LINK("GRAFIX")

80 !CALL LINK("tml16")
100 CALL LINK("PR"):: FOR K=1 TO 2 :: FOR C=1 TO 90 STEP 1 :: FOR I=-1 TO 1 STEP 2 :: FOR J=-1 TO 1 STEP 
2 :: CALL LINK("CIRCLE",96+I*C,120+J*C,C,0):: NEXT J :: NEXT I :: NEXT C :: NEXT K :: CALL LINK("PD")
120 CALL LINK("GRAFIX")

Two things are worth noting here: 
The first line of each program is !CALL LINK(“tml16”) As a comment, this has no effect when testing 
under The Missing Link. It is uncommented before compiling so it can initialize TML.

Page 21



The CALL LINK("GRAFIX") at the end of each program will return to the normal XB graphics mode so the
XB menu program can run properly. For T40XB or T80XB this would be CALL LINK(“G32”).

These programs are compiled as described above on pages 17-19. To recap:
    With  the XBGDP disk in drive #1, go to the color bar screen. (Quit or BYE)
    Press 2 for XB, then select XB from the Juwel menu.
    Type OLD DSK1.POLY or OLD DSK1.CIRCLES4 to load the program.
    Uncomment the first line so the compiled program knows to initialize TML
    Type CALL LOAD(“DSK1.UC2LC”) then CALL LINK(“X”) - converts assembly names to lower case.
    Type SAVE and the file name should be filled in automatically.
    Press ENTER repeatedly to compile and assemble. 
    When you come to the loader select Y for using assembly routines.
    The file name of the compiled program should be filled in automatically
    Enter the file name of the assembly support. In this case it is DSK1.TMLC
    Keep pressing ENTER to load and save as EA5 and the XB programs POLY-X and CIRCLES4.
    When the cursor returns, type RUN to test that the program works as expected.

Now let's put it all together

We need to modify TMLC by adding two statements:
10 CALL INIT::CALL LOAD(8192,255,172):: CALL LINK("X")::RUN "DSK1.MENU"
Then save it to a different file name: SAVE "DSK1.LOADTMLC" or SAVE “DSK1.LOAD”

This does CALL INIT, loads the compiled version of The Missing Link into low memory, then runs the 
MENU program. Once this has run, the Missing Link routines are in low memory. They do not have to be 
loaded again as long as you do not CALL INIT or otherwise do something to overwrite them.

Now the two compiled programs, POLY-X and CIRCLES4-X need to be modified by adding a comment 
and a statement:
1 !POLYSPIRAL or CIRCLES4    This will help you identify what the program is.
10 CALL LOAD(8192,255,158):: CALL LINK("RUN"):: RUN "DSK1.MENU"
Save the modified program as POLY-X or CIRCLES4-X

Now to test:

RUN "DSK1.LOADTMLC". This loads The Missing Link routines, then runs the menu program. 

In the menu program, press 1 for POLYSPIRAL or 2 for CIRCLES WITH PEN REVERSE. The compiled 
program is loaded and runs. When the compiled program is finished it will return to XB, where RUN 
“DSK1.MENU” is performed to reload the menu program. 

Page 22



USING RUNTIME ROUTINES FROM THE ORIGINAL COMPILER

If your program is written in TI BASIC you can now use the runtime routines that were part of the 
original TI BASIC compiler. The advantage is that the program created is considerably smaller, plus 
it may run a bit faster due to less overhead in the interrupt routine. The big disadvantage is that it 
only supports TI BASIC instructions (with a few additions from XB), and there have been no 
improvements for many years.

Most users will not want to use this, so it is turned off by default. To enable this option type:
     OLD DSK1.COMPILER
     uncomment line 230
     SAVE DSK1.COMPILER
Now when the compiler runs you can press “Y” when prompted “Use TI BASIC runtime?” Default 
for this prompt is always “N”.

The procedure for compiling a program is identical to the current version described above and in 
Using XBGDP. The limitations of this earlier compiler are described below, taken verbatim from the 
original manual. Do not put the runtime routines in low memory!
____________________________________________________________________________

The BASIC compiler is able to compile many TI BASIC programs, although sometimes 
minor changes have to be made to the BASIC code. Some examples:
32767+1=32768 in BASIC
32767+1=-32768 in the compiled code
10 IF RND>.5 THEN 100 ELSE 200 won't work properly in the compiled code.
Instead, use 10 IF INT(RND*2)=1 THEN 100 ELSE 200 which gives either a 0 or a 1 in both
BASIC and the compiled code.
200*200=40000 in BASIC; -25536 in compiled code.
Remember that the compiler only works with integer numbers from -32768 to 32767. If an 
operation such as dividing or SQR can give a non integer result, then you should use INT in
the BASIC program to be sure that the BASIC and compiled programs function the same.

The timing of delays loops has to be modified. FOR I=1 TO 500::NEXT I gives a delay of 
several seconds in XB or BASIC; a fraction of a second in the compiled code. The best way
to do a delay is to use CALL SOUND. For a 2 second delay you would use CALL 
SOUND(2000,110,30)::CALL SOUND(1,110,30). Neither BASIC nor the compiler can 
process the second call sound until the first has finished, so you get the full 2 second delay.
This method makes it possible to create delays that work the same in BASIC or compiled 
code.

Following is a list of the TI BASIC operations supported by the compiler:

As in XB, simple multiple statement lines can be used, separating the statements with the 
double colon

CALL LINK("RUN") - same as RUN in XB Cannot use RUN or RUN line # within a program.
CALL LINK("CON") - same as CON in XB
<FCTN 4> breaks the program as in XB except during INPUT.
All relational operators work the same as in BX. These include  <   >   =   <>   <=   >= 

Page 23



Arithmetic operators all work as they do in BX. Exponentiation (|) not supported. Remember
that dividing 5/2 will give 2, not 2.5. You can use INT in the BASIC program when dividing 
(for example INT(5/2) to be certain that BASIC and the compiler give the same results.

Logical operators from XB have been included: NOT; AND; XOR; OR 

LET - optional
REM - All remarks will be removed from the compiled program, but you can GOTO a REM 

statement just like in BX. Use of REM will not increase the size of the compiled 
program.

! - the exclamation point REM from XB has been included.
END 
STOP 
GOTO 
ON-GOTO 
IF-THEN-ELSE - XB style of IF-THEN-ELSE is now supported, with the same minor  

restrictions found in the XB compiler.
FOR-TO-STEP - step optional; +1 assumed
NEXT

INPUT - Can use the optional prompt, but can input only 1 string or number per INPUT  
statement.

READ 
DATA (Do not GOTO a DATA statement!)
RESTORE 
PRINT - works like TI BASIC, including TAB and the print separators ;,:
DISPLAY - equivalent of PRINT.

CALL CLEAR 
CALL COLOR - expanded to work like XB except for color of sprites.
CALL SCREEN 
CALL CHAR - expanded to work like XB.
CALL HCHAR 
CALL VCHAR 
CALL SOUND - cannot handle frequencies greater than 32767. (Neither can my ears!)
CALL GCHAR 
CALL KEY 
CALL JOYST

ABS 
INT 
RANDOMIZE - can be used, but has no effect; it is done automatically
RND - returns a value of 0. RND is only useful when it is multiplied by another number. i.e. 

INT(RND*6) gives the same results (0,1,2,3,4,5) when compiled as it does in BX.
SGN 
SQR - gives same number as INT(SQR(N)) in BX
ASC 
CHR$ 
LEN 
POS 
SEG$ 

Page 24



STR$ 
VAL 

String concatenation (i.e. A$&&B$) works the same as in XB. String truncated if over 255 
characters; no warning given.

DIM is optional but using it can reduce size of the compiled program.
OPTION BASE 
ARRAY LIMITATION - Important!! The program being compiled cannot use nested arrays. 
For example, if you have the two arrays DIM A(10),DIM B(10); you can use Q=A(X+Y-Z) 
but you can't nest the arrays like this: Q=A(B(7)). Use of nested arrays will cause the 
compiled program to crash!!! For the above example you would have to split up the 
statement something like this:    X=B(7)::Q=A(X)

GOSUB 
RETURN 
ON-GOSUB 

NOT SUPPORTED:

DEF
ATN
COS
EXP
LOG
SIN
TAN

No File processing capabilities have been implemented at this time.

The following have no meaning in a compiled program:
LIST
NUM
RES
BREAK
UNBREAK
CON - use CALL LINK("CON")
TRACE
UNTRACE
EDIT

Page 25


