
 * TABLE OF CONTENTS *

 NAME---------------------TYPE----------ACCESS---------PAGE-##
 ALL OPTION SUBPROGRAM A1
 ALPHALOCK SUBPROGRAM JOYSTICK/KEYBOARD A2
 BASIC DSR or SUBPROGRAM DEVICE B1
 BEEP SUBPROGRAM SOUND B2
 BIAS SUBPROGRAM CONVERSION B3
 BYE SUBPROGRAM/COMMAND EXIT RXB B4
 CAT SUBPROGRAM DISK or HARD DRIVE C1
 CHAR SUBPROGRAM SCREEN C2
 CHARSETALL SUBPROGRAM SCREEN C3
 CLEARPRINT SUBPROGRAM SCREEN C4
 CLSALL SUBPROGRAM DISK C5
 COINC SUBPROGRAM SPRITE C6
 COLOR SUBPROGRAM SPRITE C7
 COPY COMMAND EDITOR LINES C8
 DEL COMMAND EDITOR LINES D1
 DIR SUBPROGRAM DISK or HARD DRIVE D4
 DISTANCE SUBPROGRAM SPRITE D6
 EA DSR DEVICE E1
 EXE SUBPROGRAM ASSEMBLY SUPPORT E3
 EXECUTE SUBPROGRAM ASSEMBLY SUPPORT E4
 FILES SUBPROGRAM DISK F1
 GCHAR SUBPROGRAM SCREEN G1
 GO OPTION SUBPROGRAM SPRITE G2
 GMOTION SUBPROGRAM SPRITE G3
 HCHAR SUBPROGRAM SCREEN H1
 HEX SUBPROGRAM CONVERSION H2
 HGET SUBPROGRAM SCREEN H4
 HONK SUBPROGRAM SOUND H5
 HPUT SUBPROGRAM SCREEN H6
 INIT SUBPROGRAM ASSEMBLY SUPPORT I1
 INVERSE SUBPROGRAM CHARACTER I2
 IO SUBPROGRAM TSM9901 CONTROL I3
 ISROFF SUBPROGRAM INTERUPTS I13
 ISRON SUBPROGRAM INTERUPTS I14
 IV254 OPTION SUBPROGRAM DISK I15

 * TABLE OF CONTENTS *

 NAME---------------------TYPE----------ACCESS---------PAGE-##
 JOYST SUBPROGRAM JOYSTICKS J1
 JOYLOCATE SUBPROGRAM JOYSTICK & SPRITES J2
 JOYMOTION SUBPROGRAM JOYSTICK & SPRITES J3
 KEY SUBPROGRAM KEYBOARD K1
 LIST COMMAND SCREEN/DSK/PRINTER L1
 LOAD SUBPROGRAM DISK/ASSEMBLY L2
 MAGNIFY SUBPROGRAM SPRITE M1
 MAP (SAMS) OPTION SUBPROGRAM SAMS MEMORY M2
 MERGE COMMAND DISK/FILES M3
 MOD SUBPROGRAM CONVERSION M4
 MOTION SUBPROGRAM SPRITE M5
 MOVE COMMAND EDIT LINES M6
 MOVES SUBPROGRAM MEMORY (ALL TYPES) M7
 NEW SUBPROGRAM or COMMAND MEMORY (XB) N1
 OFF (SAMS) OPTION SUBPROGRAM SAMS MEMORY O1
 ON (SAMS) OPTION SUBPROGRAM SAMS MEMORY O2
 ONKEY SUBPROGRAM KEYBOARD O3
 PASS (SAMS) OPTION SUBPROGRAM SAMS MEMORY P1
 PATTERN SUBPROGRAM SPRITE/CHARACTER P2
 PEEKG SUBPROGRAM GROM P3
 PEEKV SUBPROGRAM VDP P4
 PLOAD SUBPROGRAM DISK or HARD DRIVE P5
 POKEG SUBPROGRAM GRAM P7
 POKER SUBPROGRAM VDP REGISTERS P8
 POKEV SUBPROGRAM VDP P9
 PRAM SUBPROGRAM RAM MEMORY P10
 PSAVE SUBPROGRAM DISK or HARD DRIVE P11
 QUITOFF SUBPROGRAM KEYBOARD Q1
 QUITON SUBPROGRAM KEYBOARD Q2

 * TABLE OF CONTENTS *

 NAME---------------------TYPE----------ACCESS---------PAGE-##
 RANDOMIZE SUBPROGRAM INITIALIZE SEED R1
 RES COMMAND EDIT LINES R2
 RMOTION SUBPROGRAM SPRITE R3
 RND SUBPROGRAM CONVERSION R4
 ROLLDOWN SUBPROGRAM SCREEN R5
 ROLLLEFT SUBPROGRAM SCREEN R6
 ROLLRIGHT SUBPROGRAM SCREEN R7
 ROLLUP SUBPROGRAM SCREEN R8
 SAMS SAMS CONTROL SAMS MEMORY S1
 SAVE COMMAND DISK or HARD DRIVE S5
 SCREEN SUBPROGRAM SCREEN S6
 SCROLLDOWN SUBPROGRAM SCREEN S7
 SCROLLLEFT SUBPROGRAM SCREEN S8
 SCROLLRIGHT SUBPROGRAM SCREEN S9
 SCROLLUP SUBPROGRAM SCREEN S10
 SIZE SUBPROGRAM/COMMAND MEMORY (ALL) S11
 STOP OPTION SUBPROGRAM SPRITES S13
 SWAPCHAR SUBPROGRAM CHAR S14
 SWAPCOLOR SUBPROGRAM COLOR S15
 USER SUBPROGRAM CONTROL/DISK DOS U1
 VAL OPTION SUBPROGRAM CONVERSION V1
 VCHAR SUBPROGRAM SCREEN V2
 VDPSTACK SUBPROGRAM VDP STACK LOCATION V3
 VERSION SUBPROGRAM GROM RXB V4
 VGET SUBPROGRAM SCREEN V5
 VPUT SUBPROGRAM SCREEN V6
 XB DSR or SUBPROGRAM DEVICE X1

 * TABLE OF CONTENTS *

 TITLE SCREEN of RXB (explanations) PAGE 1

 SPECIAL FEATURES OF RXB PAGE 2

 BATCH FILE SYSTEM PAGE 3

 INPUT/OUTPUT, REDO KEY, ACCESS DEVICE, ASSEMBLY PAGE 4

 EXECUTE ASSEMBLY, SAMS SUPPORT, RND COMMAND FUNCTION PAGE 5

 INTERUPT SERVICE ROUTINE, 4K LOADER/SAVER, SAVE IV254 PAGE 6

 JOYMOTION and JOYLOCATE PAGE 7

 PRAM the XB RAM MANAGER, VDP STACK MANAGER, FILES PAGE 8

 SIZE command change and explaination PAGE 9

 RXB FIXES TO XB REQUESTED BY USERS PAGE 10

 CALL subprogram list of format modified commands PAGE 11

 Pictures of screens PAGE 12

 ALL option for subprogram PAGE A1

 Format CALL CHAR(I,ALL[,...])

 CALL CHARSET(ALL)

 CALL COINC(ALL,numeric-variable[,...])

 CALL COLOR(ALL,foreground-color,background-color
 [,...])

 CALL INVERSE(ALL[,...])

 CALL MOTION(ALL,row-velocity,column-velocity
 [,...])

 CALL RMOTION(ALL,[,...])

 Description

 The ALL command is used as a option in many subprograms.
 Each option by ALL is slightly different so find the above
 subprogram to find that use of the ALL option.

 Programs

 See each subprogram for examples of use of ALL.

 ALPHALOCK option for subprogram PAGE A2

 Format CALL ALPHALOCK(numeric-variable)

 Description

 The ALPHALOCK detects if the key ALPHALOCK key is on or off.
 If the ALPHALOCK key is off the numeric-variable will be 0.
 But if the ALPHALOCK key is on numeric-variable will be non
 zero i.e. -26294 just for giggles that is hex >994A

 Programs

 Check ALPHALOCK key on/off | >100 CALL ALPHALOCK(N)
 Show the value of N | >110 PRINT N
 If N not zero then HONK | >120 IF N THEN CALL HONK
 Loop forever | >130 GOTO 100
 |

 BASIC Device Service Routine (DSR) PAGE B1

 Format RUN "BASIC"

 DELETE "BASIC"

 CALL XB("BASIC")

 CALL CAT("BASIC")

 OLD BASIC

 CALL BASIC

 Description

 The BASIC DSR (Device Service Routine) allows access to
 the TI BASIC . The access will work only if the DSR is the
 GPLDSR or LINK DSR. In other words, a DSR that acknowledges
 any type of DSR in RAM, ROM, GROM, GRAM, or VDP. Most DSR's
 only accept DSK or PIO. Others like the SAVE or LIST commands
 will only work with a program in the memory first. Still
 others like CALL LOAD("EA") must have the CALL INIT command
 used first.
 Keep in mind that if it does not work, the problem is the
 DSR your using. Almost all DSR's today only acknowledge the
 ROM or RAM DSR's. As the BASIC DSR is in GROM/GRAM it seems
 a bit short sighted on the part of most programmers to use
 cut down versions of a DSR. Please discourage this practice
 as it is a disservice to us all.

 Programs

 Will go to BASIC prompt | >100 CALL XB("BASIC")
 This line asks for a string. | >100 INPUT A$
 If string A$="BASIC" will go | >110 DELETE A$
 will switch to BASIC. |
 Will switch to BASIC. | >CALL BASIC
 Lower case also works! | >CALL EA("basic")

 BEEP subprogram PAGE B2

 Format CALL BEEP

 Description

 The BEEP command produces the same sound as the ACCEPT or
 INPUT, or BEEP as in DISPLAY options.
 See EXTENDED BASIC MANUAL pages 47, 48, 49, 77, 78.

 Programs

 The program to the right will | >100 CALL BEEP
 will produce a beep sound. |
 Show request. | >110 PRINT "YNyn ?"
 Key press request. | >120 CALL KEY("YNyn",0,K,S)

 The above program will BEEP then wait for a key and only
 accept Y N y n from CALL KEY into K.

 BIAS subprogram PAGE B3

 Format CALL BIAS(numeric-variable,string-variable
 [,...])

 Description

 The BIAS command adds 96 to all characters in the string or
 subtracts 96 from all characters in the string. If numeric
 variable is 0 then it subtracts the XB screen bias of 96
 from the characters, if the numeric variable is not 0 then
 it adds the XB screen bias of 96 to all the characters in
 the string. ONLY A STRING VARIABLE IS ALLOWED FOR BIAS.
 The XB screen bias only affects characters read or written
 to the screen. See PEEKV, POKEV and MOVES.

 Programs

 The program to the right will | >100 CALL MOVES("V$",255,511
 load X$ with 255 characters | ,X$)
 off the screen. But will not |
 be readable due to a bias. |
 The bias is now subtracted | >110 CALL BIAS(0,X$)
 from the string printed. | >120 PRINT X$
 |
 Set up a string to use | >100 Y$="This is a test!"
 Remove add BIAS to string | >110 CALL BIAS(1,Y$)
 Put the string onto screen | >120 CALL MOVES("$V",15,Y$,
 | 96)
 |

 The above program copies 255 bytes from screen address 511
 (511=15 rows plus 31 columns) into string X$. Then BIAS
 removes 96 from each byte in string X$. Finally X$ is
 shown on screen by PRINT X$

 BYE command or subprogram PAGE B4

 Format BYE

 CALL BYE

 Description

 The BYE command is the same as the BYE command in the
 EXTENDED BASIC MANUAL page 54. The BYE command ends the
 program and returns the system to a reset. BYE will close
 all open files before exiting to a reset.

 Command

 May only be used from command | >BYE
 mode.

 Programs

 May only be used in program | >100 CALL BYE
 mode. |
 |
 The INPUT asks for a Y to go | >110 INPUT "END PROGRAM":A$
 on, if not the loop forever. | >120 IF A$<>"Y" THEN 110
 Must be a Y so reset system. | >130 CALL BYE
 |

 CAT subprogram PAGE C1

 Format CALL CAT("#"[,...])

 CALL CAT("DSK#."[,...])

 CALL CAT("DSK.DISKNAME."[,...])

 CALL CAT(string-variable[,...])

 CALL CAT(number[,...])

 CALL CAT(numeric-variable[,...])

 CALL CAT(ASC II value[,...])

 Description

 The CAT command catalogs the disk drive indicated by the
 # which can be 1 to z or by path name. The path name may be
 up to 30 characters long. A numeric variable or number can
 be used for drives 1 to 9 or if higher then it is assumed
 that the numeric-variable or number is a ASCII value between
 30 to 255. This allows a catalog of a RAM-DISK designated by
 letters or control characters. Also CAT can catalog up to 32
 drives in one command. The SPACE BAR will pause the catalog
 routine, then when the pressed again continues the catalog
 listing. ANY OTHER KEY WILL ABORT THE CATALOG.

 Programs

 This line has pathname in A$ | >100 A$="DSK.ADISKNAME"
 This line uses A$ for the name| >110 CALL CAT(A$)
 of the device to catalog. |
 This line will catalog drive 4| >100 CALL CAT(N)
 if N=4 |
 This line will catalog drive C| >100 CALL CAT(X)
 if X=67 (ASCII 67 is C) |
 This line is path name. | >10 V$="WDS1.VOLUME.SUB-DIR."
 This line will catalog device | >20 CALL CAT(V$)
 WDS1 for directory VOLUME and|
 catalog SUB-DIR |
 This line catalogs drives 1 | >100 CALL CAT(1,2,3,"WDS1.")
 then 2 then 3 then WDS1l |

 CHAR subprogram PAGE C2

 Format CALL CHAR(character-code,pattern-identifier
 [,...])

 CALL CHAR(ALL,pattern-identifier[,...])

 Description

 See EXTENDED BASIC MANUAL page 56 for more data. Addition
 characters 30 to 159 by redefined, but this affects sprites.
 Now 30 (CURSOR) and 31 (EDGE CHARACTER) to be redefined.
 Also 144 to 159 may be redefined if sprites are not used.
 Pattern-identifier increased from 64 to 240 string. Thus up
 to 15 characters may be defined in single command, 4 was old
 limit in XB allowed to be defined in XB manaual page 56

 Programs

 This line will define all the | >100 CALL CHAR(ALL,"")
 characters as a empty string.|
 FOR NEXT loop 30 to 127 | >110 FOR X=30 to 127
 This line prints a character. | >120 PRINT CHR$(X);
 NEXT to continue loop. | >130 NEXT X
 Reset characters 32 to 127 | >140 CALL CHARSET(ALL)
 This line repeats the program.| >150 GOTO 100

 |
 Sets variable A$ up. | >100 A$="FF818181818181FF"
 Define all the characters same| >110 CALL CHAR(ALL,A$)
 |
 This line defines the cursor. | >120 CALL CHAR(30,"FF81FF")
 This line defines the edge | >130 CALL CHAR(31,"55")
 character. |
 |

 Options
 Sprites may not be used if characters 144 to 159 are being
 redefined for use. 15 characters now defined up from 4 in XB.

 CHARSETALL subprogram PAGE C3

 Format CALL CHARSET(ALL)

 Description

 The CHARSETALL command is just like the CHARSET command, but
 it resets characters from 30 to 127. CHARSET thus resets 32 to
 characters to 95 only. Exactly like CHARSET it also resets
 colors to original mode. CALL CHARSET(ALL) resets all the
 characters from 30 to 159 and all colors to original.

 Programs

 This resets all characters and| >100 CALL CHARSET(ALL)
 colors to original. |
 Set up a loop. | >100 FOR X=30 to 127
 Show characters on screen. | >110 PRINT CHR$(X);
 Set all colors the same. | >120 CALL COLOR(ALL,14,10)
 Set each character definition.| >130 CALL CHAR(X,"FF00FF00FF")
 Continue loop. | >140 NEXT X :: CALL BEEP
 Press any key. | >150 CALL KEY("",5,K,S)
 Reset all characters. | >160 CALL CHARSET(ALL)
 Restart it. | >170 GOTO 100
 |

 CLEARPRINT subprogram PAGE C4

 Format CALL CLEARPRINT

 Description

 The CLEARPRINT command is just like the CLEAR command, but
 it clears columns 3 to 28 that is the PRINT or DISPLAY area
 leaving columns 1 and 2 along with columns 31 and 32 as are.
 Use CLEARPRINT to take the place of CALL HCHAR loops.

 Programs

 Shows what CLEARPRINT does | CALL CLEARPRINT
 |
 Set loop chars 30 to 159 | >100 FOR X=30 to 159
 Show characters on screen. | >110 CALL HCHAR(1,1,X,768)
 Clear columns 3 to 28 | >120 CALL CLEARPRINT
 Delay loop | >130 FOR Y=1 TO 200::NEXT Y
 Next character | >140 NEXT X
 Loop forever | >150 GOTO 100
 |

 CLSALL subprogram PAGE C5

 Format CALL CLSALL

 Description

 The CLSALL command will find and close all open files.
 This allows programmers to save time and program space.

 Programs

 The program to the right will | >100 CALL CLSALL
 CLOSE all open files. |
 |
 This opens the printer. | >100 OPEN #9:"PIO",OUTPUT
 This opens a disk file JUNK. | >110 OPEN #2:"DSK1.JUNK",INPUT
 This opens a RS232 port. | >120 OPEN #4:"RS232",OUTPUT
 This opens a disk file CRAP. | >130 OPEN #7:"DSK2.CRAP",OUTPUT
 This closes all files. | >140 CALL CLSALL
 |

 COINC subprogram PAGE C6

 Format CALL COINC(#sprite-number,#sprite-number,
 tolerance,numeric-variable[,...])

 CALL COINC(#sprite-number,dot-row,dot-column,
 tolerance,numeric-variable[,...])

 CALL COINC(ALL,numeric-variable[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 64 for more data. The only
 difference is the use the comma has been added for
 auto-repeat. Previously a COINC only allowed one sprite
 comparison per program line.

 Programs
 * See EXTENDED BASIC MANUAL page 64

 Clear screen set and X to 190 | >100 CALL CLEAR :: X=190
 Set up 3 sprites to be on | >110 CALL SPRITE(#1,65,2,9,X,
 the same vertical plane. | 20,0,#2,66,2,9,X,30,0,#3,67,
 | 2,9,X,-20,0)
 COINC scans ALL sprites for a | >120 CALL COINC(ALL,A,#1,#2,1
 collision then #1,#2,#3 also. | 2,B,#1,#3,12,C,#2,#3,12,D)
 Print results on screen. | >130 PRINT A;B;C;D
 Loop forever to line 120 | >140 GOTO 120

 The above program in RXB will put a -1 in A,B,C,D variables
 unlike normal XB that would never detect all 4 collisions.

 Options

 While characters 144 to 159 are being used, you cannot use
 sprites. Notice the ALL option MUST ALWAY BE FIRST as it
 was given highest priority to increase the detection rate.
 Though the ALL option does not improve much, the normal
 COINC detections are slightly faster as the interpreter is
 not looking to find the next COINC command on the next line
 number. Instead the comma and the next sprite is checked.

 COLLIDE subprogram PAGE C7

 Format CALL COLLIDE(#sprite-number,#sprite-number,
 tolerance,dot-row,dot-column[,...])

 CALL COLLIDE(#sprite-number,dot-row,
 dot-column,tolerance,dot-row,
 dot-column[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 64 has COINC. The problem is
 XB COINC never tells you the location of a sprite and this
 absolutely limits the types of way sprites could be used.
 If sprites CONCide where did this happen? If a sprite hits
 a location how close did it get?
 COLLIDE tells you exactly where they did collide and the
 location of how close to the hit box you wanted be informed.
 Tolerance could be up to 256 bytes which could always be a
 collide result or 0 for exactly on pixel of top left corner
 of the sprite. I recommend a setting of 6 for best results.

 Programs

 Clear screen | >100 CALL CLEAR ! SPRITES
 Set up 3 sprites to be on | >110 CALL SPRITE(#1,65,2,9,99
 screen | ,20,22,#2,66,2,64,99,X,30,25
 | ,#3,67,2,9,99,-20,-35)
 COLLIDE scans 3 sprites for | >120 CALL COLLIDE(#1,#2,8,R1,
 sprite hits on #1,#2,#3 | C1,#1,#3,8,R2,C2,#2,#3,8,R3,
 sprite | C3)
 Check for non zero? | >130 IF R1+C1+R2+C2+R3+C3
 If zero loop forever | THEN 140 ELSE 120
 Show hits or non hits | >140 PRINT "#1";R1;C1;"#2";R2
 | ;C2;"#3";R3;C3
 Zero out variables | >150 R1,C1,R2,C2,R3,C3=0
 Loop forever | >160 GOTO 120

 Clear screen | >100 CALL CLEAR ! ROW:COLUMN
 Set up 3 sprites to be on | >110 CALL SPRITE(#1,65,2,9,99,
 screen | 20,22,#2,66,2,64,99,30,25,#3,
 | 67,2,9,99,-20,-20)
 COLLIDE for DOT ROW DOT COLUMN| >120 COLLIDE(#1,99,99,8,R1,C1,
 at row 99 and column 99 | #2,99,99,8,R2,C2,#3,99,99,8,
 for sprites #1,#2,#3 hit? | R3,C3)
 Check for non zero? | >130 IF R1+C1+R2+C2+R3+C3
 If zero loop forever | THEN 140 ELSE 120
 Zero out variables | >150 R1,C1,R2,C2,R3,C3=0
 Loop forever | >160 GOTO 120

 COLOR subprogram PAGE C8

 Format CALL COLOR(#sprite-number,foreground-color[,...])

 CALL COLOR(character-set,foreground-color,
 background-color[,...])

 CALL COLOR(ALL,foreground-color,background-color
 [,...])

 Description

 See EXTENDED BASIC MANUAL page 66, presently modifications
 to the COLOR subprogram is ALL will change character sets
 0 to 14 to the same foreground and background colors.

 SET NUMBER CHARACTER CODES
 0 30-31
 1 32-39
 2 40-47
 3 48-55
 4 56-63
 5 64-71
 6 72-79
 7 80-87
 8 88-95
 9 96-103
 10 104-111
 11 112-119
 12 120-127
 13 128-135
 14 136-143
 15 144-151 (RXB addition)
 16 152-159 (RXB addition)

 Programs

 All characters set foreground| >100 CALL COLOR(ALL,1,2,ALL,
 transparent and background 1 | 2,1) :: GOTO 100
 Swap characters set colors | >100 CALL COLOR(S,3,5)
 |

 Options

 Characters 144 to 159 cannot be used with Sprites.

 COPY command PAGE C9

 Format COPY start line-end line,new start line,increment

 Description

 The COPY command is used to copy a program line or block of
 program lines to any other location in the program. The COPY
 does not affect the original lines and leaves them intact.
 The block to be copied is defined by start line and end line.
 If either of these numbers are omitted, the defaults are the
 first program line and the last program line. However, at least
 one number and a dash must be entered (both can't be omitted),
 and there must be at least one valid program line between start
 line and end line. To copy one line enter it as both the start
 line and end line number. If any of the above conditions are
 not met, a Bad Line Number Error will result.
 The new start line number defines the new line number of the
 first line in the block to be copied. This number must be
 entered. There is no default. The increment defines the line
 number spacing of the copied lines and may be omitted. The
 default is 10.There must be sufficient space in the program
 for the copied segment to fit between new start line number
 and the next program line following the location where the

 block will be moved. If not, a Bad Line Number Error message
 is reported. This problem can be corrected by using a smaller
 increment, or by using RES to open up space for the segment.
 A Bad Line Number Error also results if the copying process
 would result in a line number higher than 32767.
 The COPY routine does not change any program references to
 the copied lines. It is an exact copy of the source lines
 with new line numbers. A check for sufficient memory space
 is made before each line is copied. If space is not available
 the copying process is halted than Memory Full Error reported.
 Before the first line is copied, any open files are closed
 and all variables are lost.

 COPY PAGE C10

 Description Addendum PLEASE NOTE:
 The COPY command copies the lines in reverse order
 If the copying process is halted due to insufficient
 memory space, any unoccupied lines will be at the
 beginning of the block.

 Commands

 Lines 100 to 150 are copied to| >COPY 100-150,9000,5
 line 9000 and incremented by 5|
 |
 Line 10 is copied to line 25 | >COPY 10-10,25
 |
 Line 5 to last line are copied| >COPY 5-,99
 to 99 and incremented by 10 |
 (Default). |

 DEL command PAGE D1

 Format DEL start line-end line

 Description

 The DEL command is used to delete a line or block of lines
 from a program. Start line number and end line number define
 the lines to be deleted. If start line number is omitted,
 line deletion will begin at the first line of the program. In
 this case, end line number must be preceded by a dash. If
 end line number is omitted, line deletion will end at the last
 line of the program. If start line number and end line number
 are omitted, then the first line number of the program to the
 last line number of the program is deleted. At least one valid
 program line must exist between start line number and end line
 number or a Bad Line Number Error will be reported. If only
 one line number is given without a dash, then that one line
 will be deleted.
 After the DEL command has executed any open files are closed
 and all variables are lost.

 Commands

 Lines 100 to 150 are deleted. | >DEL 100-150
 |
 Line 10 is deleted. | >DEL 10
 |
 Line 5 to last line are | >DEL 5-
 deleted. |
 |
 First line to 80 are deleted. | >DEL -80
 |

 DIR subprogram PAGE D2

 Format CALL DIR("#"[,...])

 CALL DIR("DSK#."[,...])

 CALL DIR("DSK.DISKNAME."[,...])

 CALL DIR(string-variable[,...])

 CALL DIR(number[,...])

 CALL DIR(numeric-variable[,...])

 CALL DIR(ASC II value[,...])

 Description

 The DIR command catalogs the disk drive indicated by the
 # which can be 1 to z or by path name. The path name may be
 up to 30 characters long. A numeric variable or number can
 be used for drives 1 to 9 or if higher then it is assumed
 that the numeric-variable or number is a ASCII value between
 30 to 255. This allows a catalog of a RAM-DISK designated by
 letters or control characters.
 RXB DIR can be used from program mode or command mode. Also
 DIR can catalog up to 32 drives in one command.
 The SPACE BAR will pause the catalog routine, then when the
 pressed again continues the catalog listing.
 ANY OTHER KEY WILL ABORT THE CATALOG. See CAT for more info.

 DIR PAGE D3

 Programs

 This line puts the pathname in| >100 A$="DSK.ADISKNAME"
 the string A$ |
 This line uses A$ for the name| >110 CALL DIR(A$)
 of the device to catalog. |
 |
 This line will catalog drive 4| >100 CALL DIR(N)
 if N=4 |
 |
 This line will catalog drive C| >100 CALL DIR(X)
 if X=67 (ASCII 67 is C) |
 |
 This line is path name. | >10 V$="WDS1.VOLUME.SUB-DIR."
 This line will catalog device | >20 CALL DIR(V$)
 WDS1 for directory VOLUME and|
 catalog SUB-DIR |
 |
 This line catalogs drives 1 | >100 CALL DIR(1,2,3,"WDS1.")
 then 2 then 3 then WDS1 |

 DISTANCE subprogram PAGE D4

 Format CALL DISTANCE(#sprite-number,#sprite-number,
 numeric-variable,[,...])

 CALL DISTANCE(#sprite-number,dot-row,
 dot-column,numeric-variable[,...])

 Description

 The only thing added by RXB to DISTANCE is the auto repeat.
 See EXTENDED BASIC MANUAL page 80 for more data.

 Program

 The program at the right will | >100 CALL CLEAR
 set up 3 sprites on screen and| >110 CALL SPRITE(#1,65,7,99,9
 start them moving. | 9,0,10,#2,66,4,99,99,10,0,#3
 | ,67,2,1,2,-50,-50)
 Scans three sprites locations | >120 CALL DISTANCE(#1,#2,D,#1
 and returns the distance from| ,#3,E,#2,#3,F)
 each other squared. | >130 DISPLAY AT(1,1):"#1/#2";
 | D:"#1/#3";E:"#2/#3";F)
 Restart loop | >140 GOTO 120
 |

 Options

 While characters 144 to 159 are being used, you cannot use
 sprites. The DISTANCE subprogram does get more accurate if
 you have more than one to check at a time, but is slightly
 faster than normal XB as DISTANCE in RXB does not require
 a search for another line number to CALL DISTANCE and find
 a value. The RXB version just goes to the comma and finds
 the next value of DISTANCE, so is much faster and saves
 program memory.

 EA Device Service Routine (DSR) PAGE E1

 Format RUN "EA"

 DELETE "EA"

 CALL XB("EA")

 CALL CAT("EA")

 OLD EA

 SAVE "EA" -(Must have a program within
 - memory to work at all)
 CALL EA

 Description

 The EA DSR (Device Service Routine) allows access to the
 Editor Assembler section of RXB. The access will work only
 if the DSR is the GPLDSR or LINK DSR. In other words, a DSR
 that acknowledges any type of DSR in RAM, ROM, GROM, GRAM,
 or VDP. Most DSR's only accept DSK or PIO. Others like the
 SAVE or LIST commands will only work with a program in the
 memory first. Still others like CALL LOAD("EA") must have
 the CALL INIT command used first. Almost all DSR's today
 only acknowledge the ROM or RAM DSR's.

 Programs

 Go to the Editor Assembler. | >100 CALL XB("EA")
 |
 This line asks for a string. | >100 INPUT A$:: DELETE A$
 Type EA will go to EA module |
 |
 Switch to Editor Assembler | >CALL CAT("EA")
 |
 Lower case can also be used. | >call ea
 |
 Strange looping effect. | >CALL EA("EA")

 Options
 BASIC and XB are also available.

 EA subprogram PAGE E2

 Format CALL EA

 Description

 The EA subprogram is used to switch to the Editor Assembler

 Description Addendum

 EA only works from EXTENDED BASIC, not BASIC.

 Programs

 The program at the right will | >100 CALL EA("DSK2.FW")
 switch to Editor Assembler |
 |

 EXE subprogram PAGE E3

 Format CALL EXE(cpu-address[,...])

 CALL EXE(numeric-variable[,...])

 Description

 The EXE subprogram directly goes to the cpu-address >8300
 using the GPL XML >F0 and expects to work like an assembly
 BL @address so EXE(address) put that address at >8300 thus
 to return you need an assembley RT to end. Programmers
 can see this is a BL at a cpu-address. The programmer is
 responsible for keeping track of the workspace and program
 space he is using. Also for any registers while doing a BL or
 another context switch. A RT will end the BL as long as
 registers R11, R13, R14, R15 are not changed. By using CALL
 LOAD or CALL MOVES the programmer can set up a BL routine in
 the lower 8K by filling the registers with values first, then
 using CALL EXE to directly complete these commands. This is
 faster then CALL LINK as no interpretation of the access or
 values are checked.

 Here is the example of using EXE doing VDP garbage collect
 the VDP memory not needing Memory Expansion but using the
 XB ROM 1 COMPCT routine.
 CALL EXE(29656) ! does VDP COMPCT garbage collection
 or execute the SCROLL routing in XB ROM 1
 CALL EXE(31450) ! does SCROLL screen routine

 FOR L=1 TO 4 :: CALL EXE(31450) :: NEXT L
 This would scroll the screen 4 times like PRINT does.

 EXECUTE subprogram PAGE E4

 Format CALL EXECUTE(cpu-address[,...])

 CALL EXECUTE(numeric-variable[,...])

 Description

 The EXECUTE subprogram directly goes to the cpu-address and
 expects to find 4 bytes to be present. The bytes are 1 and 2
 define the workspace register address. Bytes 3 and 4 define
 the address to start execution at in cpu memory. Programmers
 can see this is a BLWP at a cpu-address. The programmer is
 responsible for keeping track of the workspace and program
 space he is using. Also for any registers while doing a BL or
 another context switch. A RTWP will end either a BL or a BLWP
 as long as registers set are not changed. By using CALL LOAD
 or CALL MOVES the programmer can set up a BLWP routine in the
 lower 8K by filling the registers with values first, then
 using CALL EXECUTE to directly complete these commands. This
 is faster then CALL LINK as no interpretation of the access
 or values are checked.
 EXECUTE runs a XML link from GPL by moving 12 bytes from the
 Fast RAM at HEX 8300 to VDP at HEX 03C0 then moving the value
 in FAC passed from XB to HEX 8304 and does a GPL XML >F0
 After a RTWP by the Assembly program, it returns VDP HEX 03C0
 to Fast RAM HEX 8300 so the 12 bytes are restored. Thus this
 allows programmers use of FAC and ARG areas in Fast RAM.
 Here is the program loaded into Fast RAM by EXECUTE:

 AORG >8300
 CPUPGM DATA >8302 First address.
 BLWP @>834A Switch context
 with FAC as dummy.
 CLR @>837C Clear for GPL return.
 RT Return to GPL.
 END

 If a programmer absolutely must use Fast RAM for his program
 I suggest he set up a buffer for saving HEX 8300 to HEX 83FF
 if only so it will not mess up any GPL pointers and don't go
 and mess up the 12 bytes at VDP HEX >03C0. Then the only
 thing to worry about is messing up something else.

 EXECUTE PAGE E5

 Programs

 Line 100 initializes lower 8k | >100 CALL INIT
 Line 110 loads the assembly | >110 CALL LOAD(9838,47,0,38,1
 program shown below. VMBR | 14,4,32,32,44,3,128)
 Line 120 loads registers with | >120 CALL LOAD(12032,0,0,48,0
 VDP address, Buffer, Length. | ,2,255)
 Line 130 runs line 110 program| >130 CALL EXECUTE(9838)
 Line 140 loads the assembly | >140 CALL LOAD(9838,47,0,38,1
 program shown below. VMBW | 14,4,32,32,36,3,128)
 Line 150 loads registers with | >150 CALL LOAD(12032,0,0,48,0
 VDP address, Buffer, Length. | ,2,255)
 Line 160 runs line 140 program| >160 CALL EXECUTE(9838)
 Line 170 put a command in here| >170 CALL VCHAR(1,1,32,768)
 Line 180 loops to line 160 | >180 GOTO 160

 HEX ADDRESS|HEX VALUE|ASSEMBLY COMMAND EQUIVALENT
 >266E >2F00 DATA >2F00 (workspace area address)
 >2670 >2672 DATA >2672 (start execution address)
 >2672 >0420 BLWP (first executed command)
 >2674 >202C @VMBR (or >2024 VMBW)
 >2676 >0380 RTWP

 >2F00 >0000 REGISTER 0 (VDP address)
 >2F02 >3000 REGISTER 1 (RAM buffer address)
 >2F04 >02FF REGISTER 2 (length of text)

 Normal XB using LINK.
 Initialize for Assembly. | >100 CALL INIT
 Load support routine. | >110 CALL LOAD("DSK1.TEST")
 LINK to program. | >120 CALL LINK("GO")
 RXB EXECUTE EXAMPLE. |
 Initialize for Assembly. | >100 CALL INIT
 Load support routine. | >110 CALL LOAD("DSK1.TEST")
 EXECUTE program address. | >120 CALL EXECUTE(13842)

 EXECUTE does no checking so the address must be correct.
 The LINK method finds the name and uses the 2 byte address
 after the name to run the Assembly. EXECUTE just runs the
 address without looking for a name thus faster.

 Options.
 Dependent on Programmers use and skill.

 FILES subprogram PAGE F1

 Format CALL FILES(number)

 CALL FILES(numeric-variable)

 Description

 The FILES subprogram differs from the Disk Controller FILES
 on the CorComp, TI, Myarc or Parcom versions. All of these
 require a NEW after CALL FILES. NEW is executed after the
 FILES subprogram in RXB, so there is no need to use NEW.
 Also RXB FILES accepts values from 0 to 15 unlike the other
 FILES routines that can only accept 0 to 9. Each open file
 reduces VDP by 534 bytes, plus each file opened will use
 518 bytes more. Only RXB has a valid CALL FILES(0) or a
 CALL FILES(15) that works.

 Programs

 FILES opens usual buffers. | >CALL FILES(3)
 |
 FILES ends the program and | >100 CALL FILES(1)
 executes NEW. |
 |
 Only possible in RXB | >100 CALL FILES(15)
 | >SIZE
 |
 Only possible in RXB | >CALL FILES(0)
 | >SIZE
 |

 Will display 5624 Bytes of Stack free and 24488 Bytes of
 Program space free. At this point up to 15 files may be
 open at the same time. Not recommended but possible now.
 Also 0 files now is possible in RXB.

 Options
 See XB for even more powerful applications made easy.
 For example CALL XB("DSK1.LOAD",1) will do a
 CALL FILES(1) then NEW then RUN "DSK1.LOAD" AUTOMATICALLY

 GCHAR subprogram PAGE G1

 Format CALL GCHAR(row,column,numeric-variable[,...])

 Description

 See EXTENDED BASIC MANUAL page 88 for more data. The only
 change to GCHAR is the auto-repeat function.

 Programs

 This line stores the character| >100 CALL GCHAR(4,5,A,4,6,B)
 at row 4 column 5 in A, then |
 gets character at row 4 |
 column 6 in B. |
 Gets row 9 column 3 in Q and | >100 CALL GCHAR(9,3,Q,9,4,R)
 row 9 column 4 in R. |
 Put R at row 9 column 3 and | >110 CALL HCHAR(9,3,R,1,9,4,Q
 Q at row 9 column 4 | ,1)
 Continue loop. | >120 GOTO 100
 |

 Options
 CALL GCHAR in RXB is much faster than normal XB now.

 GO (MOTION) option for subprogram PAGE G2

 Format CALL MOTION(GO[,...])

 Description

 The GO command is a option in the MOTION subprogram.
 GO does exactly what you would expect starts all sprite
 motion by making them use previous sprite motion table.

 Programs

 See MOTION subprogram for examples of use of GO.

 GMOTION subprogram PAGE G3

 Format CALL GMOTION(#sprite-number,row-velocity,
 column-velocity[,...])

 Description

 The GMOTION subprogram returns the row-velocity and
 column-velocity as numbers from -128 to 127. If the sprite is
 not defined, row-velocity and column-velocity is set to zero.
 The sprite continues to move after its motion is returned, so
 this must be allowed for. See EXTENDED BASIC MANUAL MOTION
 subprogram for more data.

 Program

 GMOTION returns the row- | >100 CALL GMOTION(#1,X,Y)
 velocity into X and the |
 column-velocity into Y. |
 |
 Set up screen and up,down | >100 A(0)=-1::A(1)=1::CALL CL
 ,left,right variables | EAR::CALL MAGNIFY(2)::CALL S
 A(0) and A(1) | CREEN(15)
 Loop for 28 sprites. | >110 FOR S=1 TO 28
 Set up 28 random sprites | >120 CALL SPRITE(#S,64+S,INT(
 with random colors and | RND*16)+1,20+S,50+S,INT(A(RN
 motion. | D*1))*INT(RND*127),INT(A(RND
 | *1))*INT(RND*127))
 Loop counter. | >130 NEXT S
 Random sprite selector, | >140 S=INT(RND*28)+1::CALL GM
 get that sprites motion, | OTION(#S,X,Y)::CALL HPUT(24,
 put the values on screen. | 3,"CALL GMOTION(#"&STR$(S)&"
 | ,"&STR$(X)&","&STR$(Y)&")")
 Delay loop. | >150 FOR L=1 TO 1E3::NEXT L
 Clear screen and Z+1. | >160 CALL CLEAR::Z=Z+1::IF
 Loop till Z>8 | Z<8 THEN 140
 |

 Options
 While characters 144 to 159 are being used, you cannot use
 sprites.

 HCHAR subprogram PAGE H1

 Format CALL HCHAR(row,column,character-code)

 CALL HCHAR(row,column,character-code,
 repetition[,...])

 Description

 See EXTENDED BASIC MANUAL page 188 for more data. The only
 syntax change to HCHAR is the auto-repeat function. Notice the
 new auto-repeat must have the repetitions used or it gets row
 confused with repetitions. Also RXB HCHAR is now in ROM.

 Programs

 This line puts character 38 at| >100 CALL HCHAR(1,1,38,99,9,1
 row 1 column 1 99 times, then| ,87)
 puts character code 87 at |
 row 9 column 1 |
 |
 Fills screen with characters. | >100 CALL HCHAR(1,1,32,768,1,
 | 1,65,768,1,1,97,768,1,1,30,
 | 768) :: GOTO 100
 |

 Options
 CALL HCHAR is now written in Assembly so much faster is
 faster than normal XB, also as separate line numbers are
 needed to continue placing characters on screen.
 See VCHAR, HPUT, VPUT, HGET and VGET.

 HEX subprogram PAGE H2

 Format CALL HEX(string-variable,numeric-variable[,...
])

 CALL HEX(numeric-variable,string-variable[,...
])

 Description

 The HEX subprogram converts Decimal to Hexadecimal or from
 Hexadecimal to Decimal. If a number or numeric-variable is
 first, HEX will convert the Decimal floating point value
 (Rounded off) to a four character sting and puts the string
 into the string-variable. If a string or string-variable is
 first, HEX will convert the String into a Decimal integer and
 put it into the numeric-variable. A numeric-variable or
 number ranges from -32768 to 32767 or the Hexadecimal
 equivalent of >8000 to >7FFF. The > is not used in HEX.
 When a string or string-variable is null (length of zero)
 the numeric-variable will contain 0. The opposite is if a
 number or numeric-variable is 0 then the string-variable will
 contain a length of four and a value of >0000. Any time a
 string-variable is second it will be cleared before being
 assigned a new string value. All strings in HEX must be
 right justified or are returned as right justified, thus each
 string will be padded with zeros.
 HEX will only use the first four characters of a string to
 convert the value, it will ignore the rest of the string.
 Errors will result if a string contains characters other
 then 0-9 and A-F or a-f. Errors will result if a number is
 less than -32768 or larger than 32767.
 HEX subroutine in RXB is for Assembly mostly but is usefull
 for new RXB routines like VDPSTACK or PRAM or EXECUTE.

 HEX PAGE H3

 Programs

 From command mode. |
 Upper case | >CALL HEX("F",V)
 or lower case | >CALL HEX("f",V)
 will both return same result. | >PRINT V
 V=15 |
 |
 Line 100 sets address counter.| >100 FOR D=-32768 TO 32767
 Line 110 converts it to HEX. | >110 CALL HEX(D,H$)
 Line 120 shows DEC to HEX. | >120 PRINT D,H$
 Line 130 continues loop count.| >130 NEXT D
 |
 Line 100 asks for HEX number. | >100 INPUT "HEX=":H$
 Line 110 converts HEX to DEC. | >110 CALL HEX(H$,D)
 Line 120 shows DEC equivalent.| >120 PRINT D: :
 Line 130 starts program over. | >130 GOTO 100
 |
 Line 100 list of numbers. | >100 DATA 200,124,97,249,140,
 It takes 8 bytes to store any | 77,81,173,254,78,93,12,38,65
 number in XB. | ,55,6,0
 Line 110 read list into N. | >110 READ N
 Line 120 convert to HEX. | >120 CALL HEX(N,N$)
 Line 130 Save into a string as| >130 S$=S$&SEG$(N$,2,2)
 it takes 4 bytes per number. |
 Line 140 check for end of list| >140 IF N<>0 THEN 110
 Line 150 show number of bytes | >150 PRINT "NORMAL:";8*16
 used to store numbers. |
 Line 160 show number of bytes | >160 PRINT "USED: ";LEN(S$)+
 it would have used. | 1
 Line 170 show number of bytes | >170 PRINT "SAVED ";(8*16)-(
 it saved using string instead.| LEN(S$)+1);"BYTES"
 |

 Options:
 See LOAD and EXECUTE for better utilitys for Assembly or
 GPL access. Also useful as better then a calulator.

 HGET subprogram PAGE H4

 Format CALL HGET(row,column,length,string-variable
 [,...])

 Description

 The HGET subprogram returns into a string-variable from the
 screen at row and column. Length determines how many
 characters to put into the string-variable. Row numbers from
 1 to 24 and column numbers from 1 to 32. Length may number
 from 1 to 255. If HGET comes to the edge of the screen then
 it wraps to the other side.

 Programs

 The program to the right will | >100 CALL HGET(5,9,11,E$)
 put into string-variable E$ |
 the 11 characters at row 5 and|
 column 9. |
 | >100 CALL HGET(1,3,5,M$,9,3,1
 The program to the right will | ,Q$,24,1,32,N$)
 put into string-variable M$ |
 the 5 characters at row 1 and |
 column 3, then put into |
 string-variable Q$ the 1 |
 character at row 9 and column |
 3, then put into |
 string-variable N$ the 32 |
 characters at row 24 and |
 column 1. |
 |

 Options:
 See HPUT, VPUT, and VGET.

 HONK subprogram PAGE H5

 Format CALL HONK

 Description

 The HONK command produces the same sound as the ACCEPT or
 in INPUT or if a error occurs.

 Programs

 The program to the right will | >100 PRINT "YN ?"
 will produce a honk sound. |
 Key request for YN. | >110 CALL KEY("YN",0,K,S)
 Indicate N was pressed. | >120 IF K=78 THEN CALL HONK
 Continue on with program. | >130 GOTO 100
 |

 HPUT subprogram PAGE H6

 Format CALL HPUT(row,column,string[,...])

 CALL HPUT(row,column,string-variable[,...])

 CALL HPUT(row,column,number[,...])

 CALL HPUT(row,column,numeric-variable[,...])

 Description

 The HPUT subprogram puts a string, string-variable, number,
 or numeric-variable onto the screen at row and column. The
 The row numbers from 1 to 24 and column numbers for 1 to 32.
 If the string, string-variable, number, or numeric-variable
 being put onto screen goes to an edge it wraps to the other
 side. Unlike the EXTENDED BASIC DISPLAY AT the HPUT
 subprogram will not scroll the screen. HPUT runs from ROM.

 Programs

 Line 100 puts string "THIS" on| >100 CALL HPUT(10,4,"THIS")
 the screen at row 10 and |
 column 4. |
 |
 Line 110 sets string-variable | >110 A$="HPUT"
 A$ equal to string "HPUT" |
 |
 Line 120 puts string "is" at | >120 CALL HPUT(12,5,"is",14,4
 row 12 and column 5, then puts| ,A$)
 string-variable A$ at row 14 |
 and column 4. |
 |
 Line 100 puts string A$ at row| >100 CALL HPUT(16,5,A$)
 16 and column 5. |
 |
 Puts 456 at row 10 col 15 | >100 CALL HPUT(10,15,456)
 |

 Options:
 CALL HPUT is now written in Assembly so much faster is
 faster than normal then XB DISPLAY AT(row,column)
 See HCHAR, VCHAR, HGET and VGET.

 INIT subprogram PAGE I1

 Format CALL INIT

 Description

 The INIT command is the same as the EXTENDED BASIC MANUAL
 page 101. Originally INIT loaded more data then actually
 existed, this has been fixed. The other correction is that
 you no longer have to use INIT before LINK, or LOAD. They
 will function if INIT has been called first or not. Unless
 loading a program that needs the INIT first.

 * NOTE *
 RXB only loads up to >24F4 first open byte. Reasons
 unknown XB loads useless junk from >24EA to >25FF that
 seems to be a programming error loading 277 useless
 bytes. Thus normal XB over writes these 277 bytes.

 Programs

 The program to the right will | >100 CALL INIT
 initialize the lower 8K by |
 loading support routines for |
 assembly. |
 |

 INVERSE subprogram PAGE I2

 Format CALL INVERSE(character-code[,...])

 CALL INVERSE(ALL[,...])

 Description

 The INVERSE subprogram finds the character definition of the
 character-code and inverts all the bytes in the character
 definition. That means it just reverses the foreground and
 background. The ALL feature inverts characters 30 to 143
 thus not affecting characters 144 to 159 as this would
 destroy sprites.

 Programs

 The program to the right will | >100 CALL INVERSE(65)
 INVERSE all character-code (A)|
 in the character definition |
 table in memory. |
 |
 The program to the right will | >100 CALL INVERSE(ALL)
 INVERSE all character-codes |
 from 30 to 143. |
 |
 Line 100 will ask for a string| >100 INPUT A$
 of characters terminated by |
 the ENTER key. |
 Line 110 is a loop to counter.| >110 FOR L=1 TO LEN(A$)
 Line 120 singles each one of | >120 C=ASC(SEG$(A$,L,1))
 the characters in A$. |
 Line 130 INVERSEs each one. | >130 CALL INVERSE(C)
 Line 140 completes the loop. | >140 NEXT L
 Line 150 restarts the program.| >150 GOTO 100
 (Be sure and not enter any blank characters in this program)

 IO subprogram PAGE I3

 Format CALL IO(type,address[,...])

 CALL IO(type,bits,cru-base,variable,variable
 [,...])

 CALL IO(type,length,vdp-address[,...])

 Description

 The IO subprogram allows access to and control of any chip in
 the console or peripheral cards. The type refers to different
 access methods like playing sound from GROM or VDP memory
 automatically. The type can also specify reading or writing
 directly to a Control Register Unit (CRU) address. Thereby
 allowing direct chip control, or direct chip bypass if the
 user wishes. The IO subprogram is a Graphics Programming
 Language (GPL) command. So the function is exactly like GPL
 despite being run from the XB environment. As most of XB is

 written in GPL the user gains greater GPL like control.
 After all the Operating System is written in GPL for a
 good reason.*Note these docs are from GPL Manuals.

 type address specifications
                ~~~~~~            ~~~~~~~~~~~~~~~~~~~~~~
                  0   ----------  GROM sound list address.
                  1   ----------  VDP  sound list address.
                  2   ----------  CRU input.
                  3   ----------  CRU output.
                  4   ----------  VDP address of Cassette write list.
                  5   ----------  VDP address of Cassette read list.
                  6   ----------  VDP address of Cassette verify list.
 
           The length specifies the number of bytes. The length can be
          from -32768 to 32767 depending on the amount of VDP memory
          that is available. Of course a value of -32768 is HEX >8000
          and 32767 is HEX >7FFF and VDP normally in a TI is only 16384
          or HEX >4000 of VDP. So be careful or lock-up will result.
          The cru-base is the CRU address divided by 2  in decimal form
          as the command automatically doubles the value input. The CRU
          -base ranges from 0 to 8191 or HEX >0000 to >1FFF with a EVEN
          address for 8 bits or more being scanned. That means that a
          value of 8191 will lock-up the system as it is looking for a
          bit in 8192 that does not exist.



          IO  (SOUND LIST)                                     PAGE  I4
          -------------------------------------------------------------
          The variable can input or output values ranging from 0 to 255
          as that is equivalent to a single byte value. As there are
          two variables 16 bits can be represented in the two 8 bit
          variables. If CRU input reads less than 8 bits, the unused
          bits in the byte are reset to zero. If CRU input reads less
          then 16 but more than 8 bits, the unused bits in the word
          will be reset to zero. The bits range from 1 to 16 for input
          or output.
 
          AUTO-SOUND INSTRUCTION GROM/GRAM/VDP
 
          Format         CALL IO(type,address[,...])
 
           Control of the Sound Generator Chip (SGC) in the system
          console is through a pre-defined table in GROM/GRAM or VDP
          memory. Sound output is controlled by the table and the VDP
          Interrupt Service Routine (ISR). A control byte at the end of
          the table can cause control to loop back up in the table to
          continue, or end sound output. The format of the table is the
          same regardless of where it resides. The table consists of a
          series of blocks, each of which contains a series of bytes
          which are directly output to the SGC.
           Since the VDP generates 60 interrupts per second, the
          interrupt count is expressed in units of one-sixtieth of a
          second.
           When the IO command is called, upon the next occurring
          VDP interrupt, the first block of bytes is output to the SGC.
          The interpreter (Operating System) waits the requested number
          of interrupts (for example, if interrupt counts are 1, every
          interrupt causes the next block to be output). Remember that
          interpretation of XB continues normally while the SGC control
          is enabled.
           The sound control can be terminated by using an interrupt
          count of 0 in the last block of the table. Alternatively, a
          primitive looping control is provided by using a block whose
          first byte is 0, and the next 2 bytes indicate an address in
          the same memory space of the next sound block to use. (That
          means one block points to another block only in the same type
          of memory).



          IO (SOUND LIST)                                      PAGE  I5
          -------------------------------------------------------------
           If the first byte is hex FF or decimal 255, the next two
          bytes indicate an address in the other memory space. (That
          means one block points to another block but in another type
          of memory.) These allow switching sound lists from GROM/GRAM
          to VDP or VDP to GRAM/GROM. By making this the beginning of
          the entire table, the sound sequence can be made to repeat
          indefinitely.
           The type 0 indicates sound lists in GROM or GRAM and type 1
          indicates sound lists in VDP.
           Executing a sound list while table-driven sound control is
          already in progress (from a previous sound list) causes the
          old sound control to be totally supplanted by the new sound
          instruction. (That means any sound chip command will over-
          ride old sound chip commands).
           The SGC has 3 tone (square wave) generators - 0, 1, and 2
          all of which can be working simultaneously or in combination.
          The frequency (pitch) and attenuation (volume) of each
          generator can be independently controlled. In addition, there
          is a noise generator which can output white or periodic
          noise. For more information on controlling the SGC, see the             
          TSM9919 SGC specification.                                                
 
          ATTENUATION CONTROL (for generators 0, 1, 2 or 3)
 
          One byte must be transmitted to the SGC:
 
          Binary     1-REG#-1-Attenuation
 
                REG# = register number (0,1,2,3)
                Attenuation = Attenuation/2
                      (e.g. A=0000 0  db = highest volume;
                            A=1000 16 db = medium volume;
                            A=1111 30 db = off. )
 
          EXAMPLE: 1 10 1 0000 : turn on gen. #2 highest volume.
                   1 01 1 0100 : turn on gen. #1 medium high volume.
                   1 11 1 1111 | turn off gen. #3 (noise generator).



          IO (SOUND LIST)                                      PAGE  I6
          -------------------------------------------------------------
          
          FREQUENCY CONTROL   (for generators 0, 1, 2)
          -----------------
          Two bytes must be transmitted to the SGC for a given register
          and to compute the number of counts from the frequency F
          use: N = 111860 / F
 
          Binary     1-REG#-N(1s 4 bits)-00-N(ms 6 bits)
                            Note that N must be split up into its least
                            significant 4 bits and most significant 6
                            bits (10 bits total).
 
           The lowest frequency possible is 110 Hz and the highest is
          55938 Hz.
 
          NOISE CONTROL                 |
          -------------                 |
          One byte must be transmitted to the SGC:
 
          Binary     1-1-1-0-0-T-S
 
                T = 0 for white noise, 1 for periodic noise;
                S = Shift rate (0,1,2,3) = frequency center of noise.
                    S=3=frequency dependent on the frequency of tone
                    generator #3.



          IO (SOUND LIST)                                      PAGE  I7
          -------------------------------------------------------------
 
          Programs
 
          Line 100 clears screen.       | >100 CALL CLEAR ! Chimes
          Line 110 to ...               | >110 DATA 5,159,191,223,255,2
                                        |  27,1,9,142,1,164,2,197,1,144
                                        |  ,182,211,6,3,145,183,212,5,3
                                        |  ,146,184,213,4
                                        | >120 DATA 5,167,4,147,176,214
                                        |  ,5,3,148,177,215,6,3,149,178
                                        |  ,216,7
                                        | >130 DATA 5,202,2,150,179,208
                                        |  ,6,3,151,180,209,5,3,152,181
                                        |  ,210,4
                                        | >140 DATA 5,133,3,144,182,211
                                        |  ,5,3,145,183,212,6,3,146,184
                                        |  ,213,7
                                        | >150 DATA 5,164,2,147,176,214
                                        |  ,6,3,148,177,215,5,3,149,178
                                        |  ,216,4
          Line 160 ends sound list.     | >160 DATA 5,197,1,150,179,208
                                        |  ,5,3,151,180,209,6,3,152,181
                                        |  ,210,7,3,159,191,223,0
          Line 170 reads list into B and| >170 A=A+1 :: READ B :: CALL
          A is counter                  |   POKEV(A,B)
          Line 180 checks end of list?  | >180 IF B=0 THEN 190 ELSE 170
          Line 190 shows how to access. | >190 PRINT "TYPE:": :"CALL IO(
                                        |  1,8192)"
                                        | >200 CALL IO(1,8192)
                                        | 
          
          Line 310 continues AD loop.   | >310 NEXT AD
          Line 320 executes sound list. | >320 CALL IO(1,4096)
          Line 330 prints out suggestion| >330 PRINT "CRASH": :"TYPE:":
          on how to test IO.            |  "CALL IO(1,4096)"



          IO (SOUND LIST)                                      PAGE  I8
          -------------------------------------------------------------
 
          Programs
 
          Line 100 clears the screen.   | >100 CALL CLEAR ! CRASH
          Line 110 to ...               | >110 DATA 2,228,242,5
                                        | >120 DATA 2,228,240,18
                                        | >130 DATA 2,228,241,16
                                        | >140 DATA 2,228,242,14
                                        | >150 DATA 2,228,243,12
                                        | >160 DATA 2,228,244,10
                                        | >170 DATA 2,229,245,9
                                        | >180 DATA 2,229,246,8
                                        | >190 DATA 2,229,247,7
                                        | >200 DATA 2,229,248,6
                                        | >210 DATA 2,229,249,5
                                        | >220 DATA 2,230,250,4
                                        | >230 DATA 2,230,251,3
                                        | >240 DATA 2,230,252,2
                                        | >250 DATA 2,230,253,1
                                        | >260 DATA 2,230,254,1
          Line 270 ends sound list.     | >270 DATA 1,255,0,0
          Line 280 AD is VDP address to | >280 FOR AD=4096 TO 4160 STE
          start with and ends with.     |  P 4
          Line 290 reads list.          | >290 READ V1,V2,V3,V4
          Line 300 moves them into VDP. | >300 CALL POKEV(AD,V1,V2,V3,V
                                        |  4)
          Line 310 continues AD loop.   | >310 NEXT AD
          Line 320 executes sound list. | >320 CALL IO(1,4096)
          Line 330 prints out suggestion| >330 PRINT "CRASH": :"TYPE:":
          on how to test IO.            |  "CALL IO(1,4096)"
 
           All data values must converted to Binary in order to see
          what is going on. You now have all the data that I have as
          to this phase of IO types 0 and 1. See Editor Assembler
          Manual also for more data on sound lists and sound chip.



          IO (SOUND LIST)                                      PAGE  I9
          -------------------------------------------------------------
          Sound table creator for conversion of sound data.

          100 CALL CLEAR :: PRINT "*SOUND DATA TABLE CREATOR*"
          110 Q$="0123456789ABCDEF"
          120 INPUT "GENERATOR # ?":GN
          130 INPUT "DURATION ?":DUR
          140 INPUT "FREQUENCY ?":FREQ
          150 INPUT "VOLUME ?":VOL :: PRINT : : :
          160 IF DUR>17 THEN 180
          170 DUR=17
          180 REM  DURATION 
          190 DUR=INT((DUR*255)/4250) :: CONV=DUR :: GOSUB 400
          200 DUR$=SEG$(HX$,3,2) :: IF FREQ>-1 THEN 290
          210 REM   NOISE FREQUENCY  
          220 FR=ABS(FREQ)-1 :: FR$="E"&STR$(FR)
          230 REM  NOISE VOLUME 
          240 VOL=INT(VOL/2) :: CONV=VOL
          250 GOSUB 430 :: VOL$="F"&SEG$(HX$,4,1)
          260 PRINT "DATA>02";FR$;",>";VOL$;DUR$: : :
          270 GOTO 360
          280 REM  TONE FREQUENCY 
          290 FR=INT((111860.8/FREQ)+.5)
          300 CONV=FR :: GOSUB 400
          310 FR$=SEG$(Q$,GN*2+7,1)&SEG$(HX$,4,1)&SEG$(HX$,2,2)
          320 REM  TONE VOLUME 
          330 VOL=INT(VOL/2) :: CONV=VOL :: GOSUB 400
          340 VOL$=SEG$(Q$,GN*2+8,1)&SEG$(HX$,4,1)
          350 PRINT "DATA>03";SEG$(FR$,1,1)&SEG$(FR$,2,1);",>";
          SEG$(FR$,3,2);VOL$;",>";DUR$;"00": : :
          360 PRINT: :"ANOTHER SOUND (Y/N)?"
          370 CALL ONKEY("YN",3,K,S) GOTO 100,390
          380 GOTO 370
          390 CALL CLEAR :: END
          400 REM  DECIMAL TO HEX 
          410 AY=INT(CONV)/16 :: BY=INT(AY)/16 
          420 CY=INT(BY)/16 :: DY=INT(CY)/16
          430 AP=(AY-INT(AY))*16 :: BP=(BY-INT(BY))*16
          440 CP=(CY-INT(CY))*16 :: DP=(DY-INT(DY))*16
          450 HX$=SEG$(Q$,DP+1,1)&SEG$(Q$,CP+1,1)&
          SEG$(Q$,BP+1,1)&SEG$(Q$,AP+1,1) :: RETURN
         
          Use this program to create Hex strings that can use
          CALL MOVES to move strings into VDP to be played from
          a CALL IO(1,VDP-address)



          IO (CRU ACCESS)                                      PAGE I10
          -------------------------------------------------------------
 
          CRU ACCESS INSTRUCTION
 
          Format         CALL IO(type,bits,cru-base,variable,variable
                         [,...])
 
           The IO types 2 and 3 can be used to control devices.
          IO always must be the CRU address divided by 2 as any 
          value above 8192 will be out of range. The cru-base must be  
          divided by 2 as the 9901 chip ignores the least significant 
          bits of the base register it uses. See Editor Assembler 
          Manual page 61. The CRU data to be written should be right  
          justified in the byte or word. The least significant bit 
          will output to or input from the CRU address specified by 
          the CRU base address. Subsequent bits will come from or go 
          to sequentially higher CRU addresses. If the CRU input reads 
          less than 8 bits, the unused bits in the byte are reset to 
          zero. If the CRU input reads less than 16 bits but more than 
          8 bits, the unused bits in the full two 8 bit bytes will be 
          reset to zero.
 
          Programs
          Line 100 display what it does | >100 DISPLAY AT(1,1)ERASE ALL
          for you.                      |  :"THIS PROGRAM CHECKS FOR
                                        |    UNUSUAL KEYS BEING PRESSED
                                        |  , EVEN IF MORE THEN FOUR KEY
                                        |  ARE BEING PRESSED AT ONCE"
          Line 110 scans CRU at >0006   | >110 CALL IO(2,16,3,A,B):: IF
          and reports keys pressed.     |   A=18 AND B=255 THEN 110 ELS
                                        |  E CALL HPUT(24,3,RPT$(" ",30
                                        |  ),24,24,STR$(A)&" "&STR$(B))
          Line 120 more reports.        | >120 IF A=146 THEN CALL HPUT(
                                        |  24,3,"FUNCTION KEY")ELSE IF
                                        |  B=191 THEN CALL HPUT(24,3,"C
                                        |  ONTROL KEY")ELSE IF B=223 TH
                                        |  EN CALL HPUT(24,3,"SHIFT KEY
                                        |  ")
          Line 130 still more reports.  | >130 IF B=251 THEN CALL HPUT(
                                        |  24,3,"ENTER KEY")ELSE IF B=2
                                        |  53 THEN CALL HPUT(24,3,"SPAC
                                        |  E BAR")ELSE IF B=254 THEN CA
                                        |  LL HPUT(24,3,"PLUS/EQUAL KEY
                                        |  ")
          Line start over scan of keys. | >140 GOTO 110



          IO (CRU ACCESS)                                      PAGE I11
          -------------------------------------------------------------
 
          Programs
 
          Line 100 clears screen.       | >100 CALL CLEAR
          Line 110 explains program.    | >110 CALL HPUT(4,7,"This is a
                                        |   demo of the",6,7,"CALL IO(3
                                        |  ,8,2176,B)",8,7,"3 = TYPE(CR
                                        |  U output)",10,7,"8 = NUMBER
                                        |  OF BITS",12,7,"2176=address/
                                        |  2")
          Line 120 turn off card, show  | >120 CALL IO(3,8,2176,0):: FO
          the present byte value being  |  R B=0 TO 255 :: CALL HPUT(14
          sent.                         |  ,7,"B=byte (value "&STR$(B)&
                                        |  ")")
          Line 130 display block to get | >130 CALL HPUT(18,5,"********
          attention.                    |  ******************",19,5,"WA
                                        |  TCH THE DRIVE LIGHTS",20,5,"
                                        |  **************************")
          Line 140 send byte to card and| >140 CALL IO(3,8,2176,B):: NE
          when done with loop, clear for|  XT B :: CALL HCHAR(14,24,32,
          starting over program.        |  7):: GOTO 110
                                        |
          Line 100 explains program.    | >100 ! TURNS OFF/ON/OFF EACH
                                        |  CARD FROM >1000 TO >1F00 BUT
                                        |  WILL LOCKUP WITH CERTAIN
                                        |  CARDS.
          Line 110 cru address from     | >110 FOR CRU=2048 TO 3968 STE
          >1000 to >1F00, turn off card,|  P 128::CALL IO(3,8,CRU,0,3,8
          turn on card, delay for 2     | >,CRU,255)::FOR A=1 TO 200::N
          seconds, turn off card, turn  |  EXT A::CALL IO(3,8,CRU,0)::N
          off card. Loop end.           |  EXT CRU

          Options
           Some CRU address are used by the Operating System or XB and
          any attempt to redefine them will create problems. Also some
          of the address areas will return incorrect values as they
          have changed since IO has accessed them, so take care.
          Additionally some cards have the same problem, if the card
          has a program that has a interrupt or CRU links turned on as
          you access it, a complete lock up will result as a fight for
          control ensues. So with that happy thought, a alternate way
          is to use EXECUTE or LINK instead.



          IO (CASSETTE ACESS)                                  PAGE I12
          -------------------------------------------------------------
 
          CASSETTE INPUT/OUTPUT/VERIFY INSTUCTION
 
          Format         CALL IO(type,length,vdp-address[,...])
 
           The three different cassette I/O instructions use the same
          format. The write and read instructions physically perform
          Input/Output to the cassette. The verify instruction will
          read a tape and compare it, byte by byte, against what is in
          the specified VDP area. All will report an  I/O error if one
          is detected. No prompts are present with these three formats.   
          These three types control the cassette directly so no prompt 
          will tell the user to turn on or off the cassette record/play 
          buttons. The programmer must inform the user with own prompt.
 
          Programs
          (Presently I have no cassette to write programs with.)
 
          AUDIO GATE
          ----------
          CRU bit 24 is the audio gate which allows data being read to
          be heard. If the bit is set to 1, the data being read is
          heard, and if the bit is set to 0, the data is not heard.
          Setting the bit to a 0 or 1 is done with an IO instruction, or
          a Assembly instruction.
 
          MOTOR CONTROL
          -------------
          There are two CRU bits (22 and 23) used to control cassettes
          1 and 2, respectively. When there is no Cassette IO being
          done, both motors remain on. When Cassette IO is specified,
          the DSR (Device Service Routine) will control the data being
          read. If there are two motor units connected, the data will be
          read simultaneously, or you may have the option of reading
          data from one motor unit and playing the recorded voice from
          another motor unit through the TV (Monitor) speaker. 
          
          *NOTE:
          Compatibility with or without 32K or other devices is not a
          concern as IO needs no RAM to work with. Therefore from just
          a console all IO commands will work fine. If you only have a
          Cassette and RXB you can quickly load/save/verify without
          menus, or just make up your own.



          ISR             CRU MAP ADDRESS                      PAGE I13
          -------------------------------------------------------------
          Bit R12-address I/O/I+ Usage
          =============================================================

            0   >0000   I/O    0: I/O mode 1: timer mode
            1   >0002   I+     0: A peripheral interrupt occured
            2   >0004   I+     0: a VDP interrupt occured
            3   >0006   I      =      .   ,   M   N   /  fire1  fire2 
            4   >0008   I      Space  L   K   J   H   ;  left1  left2
            5   >000A   I      enter  O   I   U   Y   P  right1 right2
            6   >000C   I      (none) 9   8   7   6   0  down1  down2
            7   >000E   I      fctn   2   3   4   5   1  up1    up2 
            8   >0010   I      shift  S   D   F   G   A 
            9   >0012   I      ctrl   W   E   R   T   Q 
           10   >0014   I      (none) X   C   V   B   Z 
            11   >0016   -  (see bit 27)
           12   >0018   I/I+   Pull up 10K to +5V
           13   >001A   -      (see bit 25)
           14   >001C   -      (see bit 24)
           15   >001E   -      (see bit 23)
           16   >0020   I/O    n.c.
           17   >0022   I/O    n.c.
           18   >0024   O      Select keyboard column (or joystick)
           19   >0026   O      Select keyboard column (or joystick)   
           20   >0028   O      Select keyboard column (or joystick) 
           21   >002A   O      Set alpha-lock key
           22   >002C   O      1: turn CS1 motor on
           23   >002E   O      1: turn CS2 motor on
           24   >0030   O      Audio gate
           25   >0032   O      Output to cassette mike jack
           26   >0034   -      (see bit 18)
           27   >0036   I      Input from cassette headphone jack

          28   >0038      -      (see bit 10: keyboard mirror)
          29   >003A      -      (see bit 9)
          30   >003C      -      (see bit 8)
          31   >003E      -      (see bit 7)
=================================================================



          ISROFF          subprogram                           PAGE I14
          -------------------------------------------------------------
 
          Format          CALL ISROFF(numeric-variable)
 
 
          Description
 
          The Interrupt Service Routine (ISR) is a routine that executes
          during timed intervals. The operating system of the TI is set
          up for these. Mouse or Screen dumps or Hot Key programs bring
          to mind the common uses of a ISR hook. The ISROFF routine in
          RXB does as it suggests and turns the ISR hook off. But the
          numeric-variable is used to store the address of where this
          ISR hook came from. Of course ISRON is the opposite and will
          turn it back on. Extreme care must be used when turning on or
          off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)
          will be 0 when there is no ISR. Otherwise any other value will
          mean that a ISR is being used.
 
          Programs
 
          This line checks ISR hook.    | >100 CALL ISROFF(J)
          This shows if ISR is in use.  | >110 IF J THEN PRINT "ISROFF"
          This line loads another file. | >120 CALL LOAD("DSK1.HOT")
          This starts another ISR.      | >130 CALL LINK("START")
          This line checks ISR hook.    | >140 CALL ISROFF(K)
          This shows if ISR is in use.  | >150 IF K THEN PRINT "ISROFF"
          This turns first ISR back on. | >160 CALL ISRON(J)
          This turns second ISR back on.| >170 CALL ISRON(K)
            The program continues...    | 
                                        |
          Safer way to check ISRHOOK    | >100 CALL PEEK(-31804,I,J)
          Check if zero then no ISR ON  | >110 IF I+J THEN CALL ISROFF
          if I+J<>0 then turn off ISR   |  (N)     
          and put into variable N       |
                                        |
          The above program has loaded N with the ISR HOOK Address.

          Options:
          See ISRON, PRAM, CALL SIZE, INIT, LOAD and VDPSTACK.



          ISRON           subprogram                           PAGE I15
          -------------------------------------------------------------
 
          Format          CALL ISRON(numeric-variable)
 
 
          Description
 
          The Interrupt Service Routine (ISR) is a routine that executes
          during timed intervals. The operating system of the TI is set
          up for these. Mouse or Screen dumps or Hot Key programs bring
          to mind the common uses of a ISR hook. The ISRON routine in
          RXB does as it suggests and turns the ISR hook on. But the
          numeric-variable is used to load the address of where this
          ISR hook came from. Of course ISROFF is the opposite and will
          turn it back off. Extreme care must be used when turning on or
          off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)
          will be 0 when there is no ISR. Otherwise any other value will
          mean that a ISR is being used.
 
          Programs
 
          This line peeks ISR hook.     | >100 CALL PEEK(-31804,I,J)
          This checks if ISR is in use, | >110 IF I+J THEN CALL ISROFF(
           and if not 0 turn off ISR.   |  ADDRESS1)
          This line loads another file. | >120 CALL LOAD("DSK1.HOT")
          This starts another ISR.      | >130 CALL LINK("START")
          This turns off ISR.           | >140 CALL ISROFF(ADDRESS2)
          This checks if old ISR is ok, | >150 IF I+J THEN CALL ISRON(A
           if yes turn it on.           |  DDRESS1)
            The program continues...    |
                                        |
          Safer way to check ISRHOOK    | >100 CALL PEEK(-31804,I,J)
          Check if zero then no ISR ON  | >110 IF I+J THEN CALL ISRON(N)
          if I+J<>0 then turn off ISR   |       
          and put into variable N       |
                                        |
          The above program has ISR HOOK Address loaded from N.

          Options:
          See ISROFF, PRAM, CALL SIZE, INIT, LOAD and VDPSTACK.



          IV254          command                               PAGE I16
          -------------------------------------------------------------
 
          Format         SAVE DSK2.PRGM,IV254

 
          Description
 
          The IV254 command functions normally to save XB programs in
          Internal Variable format of 254 size per record. 
          An additional freature is IV254 may be specified after the
          SAVE command to convert to Internal Variable 254 format.
          The IV254 format makes it much more easy to tell an XB
          program from EA programs when cataloging a disk.
          Internal Variable files do take up one sector more then
          XB program format. It should be noted that XB programs
          smaller then 3 sectors can not be saves in IV254 format.
 
          Command
 
          Saves to DISK 2 in XB program | >SAVE DSK2.TEST
          image format TEST             |
                                        |
          Saves to disk 3 in XB program | >sAVE DSK3.STUFF,IV254
          Internal Variable 254 named   |
          STUFF                         |
                                        | 
          Saves to WDS1 in dirctory EXB | >SAVE WDS1.EXB.RB,IV254
          XB program Internal Variable  |                              
          254 named RB                  |
                                        |             

          Options
          Allows better cataloging options for saving XB files.



          JOYST          subprogram                            PAGE  J1
          -------------------------------------------------------------
 
          Format         CALL JOYST(key-unit,x-return,y-return[,...])
 
          Description
 
          See EXTENDED BASIC MANUAL page 108 
          Except for adding auto repeat there is no changes to JOYST
 
          Programs
 
          The program on the right will | >100 CALL CLEAR
          illustrate a use of JOYST     | >110 CALL SPRITE(#1,33,5,96,1
          subprogram. It creates two    |  28,#2,42,2,96,128)
          sprites and then moves them   | >120 CALL JOYST(1,X1,Y1,2,X2,
          around according to the input |  Y2)
          from the joysticks.           | >130 CALL MOTION(#1,-Y1,X1,#2
          Two players with the same     |  -Y2,X2)
          input speed and motion.       | >140 GOTO 120
                                        |

          Options:
          See JOYMOTION, JOYLOCATE, KEY or ONKEY making it much more 
          easy to use then normal XB routines as it combines several 
          commands into a single command to use, also much faster 
          response and more variables are used to control routines
          for a user.



          JOYLOCATE      subprogram                            PAGE  J2
          -------------------------------------------------------------

          Format         CALL JOYLOCATE(key-unit,x-return,y-return,  
                         row-index,column-index,#sprite,dot-row,
                         dot-column)

                         CALL JOYLOCATE(key-unit,x-return,y-return,  
                         row-index,column-index,#sprite,dot-row,
                         dot-column),key-return-variable)

                         CALL JOYLOCATE(key-unit,x-return,y-return,  
                         row-index,column-index,#sprite,dot-row,
                         dot-column),key-return-variable) 
                         GOTO line-number

          Description

          JOYLOCATE combines commands JOYST, KEY, LOCATE and a built in
          IF fire-button GOTO line-number. Keyboard key or fire button
          is in key-return-variable, but only joystick fire or key Q is
          used for GOTO line-number. As seen above line number 
          option can be left out or furter key-return-variable can be 
          left out too. Index is number of dots for row and column.

          Programs

          Clear screen.                | >100 CALL CLEAR
          Set character for use.       | >110 CALL CHAR(143,"FFFFFFFFFF
                                       |  FFFFFF")
          Set up a sprite to use.      | >120 CALL SPRITE(#1,143,2,9,19
                                       |  0)
          Look for joystick movement   | >130 CALL JOYLOCATE(1,X,Y,8,8,             
       
          and move it or ignore.       |  #1,R,C,K) GOTO 160        
          Show variables on screen.    | >140 PRINT X;Y;K;R;C
          Loop forever                 | >150 GOTO 130
          Show variables on screen.    | >160 PRINT X;Y;K;R;C;"FIRE"
          Loop forever                 | 170 GOTO 130
                                       |

          Options:
          See JOYMOTION or ONKEY or KEY for more XB changes created
          by RXB to speed up the programs and make them easier to 
          read and write.



          JOYMOTION      subprogram                            PAGE  J3
          -------------------------------------------------------------

          Format         CALL JOYMOTION(key-unit,x-return,y-return,  
                         #sprite,row-index,column-index)

                         CALL JOYMOTION(key-unit,x-return,y-return,  
                         #sprite,row-index,column-index,
                         key-return-variable)

                         CALL JOYMOTION(key-unit,x-return,y-return,  
                         #sprite,row-index,column-index,
                         key-return-variable)
                         GOTO line-number

          Description

          JOYMOTION combines commands JOYST, KEY, MOTION and a built in
          IF fire-button GOTO line-number. Keyboard key or fire button
          is in key-return-variable, but only joystick fire or key Q is
          used for GOTO line-number. As seen above line number 
          option can be left out or furter key-return-variable can be 
          left out too. Index is number of dots for row and column.

          Programs

          Clear screen.                | >100 CALL CLEAR
          Set character for use.       | >110 CALL CHAR(143,"FFFFFFFFFF
                                       |  FFFFFF")
          Set up a sprite to use.      | >120 CALL SPRITE(#1,143,2,9,19
                                       |  0,20,0)
          Look for joystick movement   | >130 CALL JOYMOTION(1,X,Y,#1,9             
       
          and move it or ignore.       |  ,9,K) GOTO 160        
          Show variables on screen.    | >140 PRINT X;Y;K
          Loop forever                 | >150 GOTO 130
          Show variables on screen.    | >160 PRINT X;Y;K;"FIRE"
          Loop forever                 | 170 GOTO 130
                                       |

          Options:
          See JOYMOTION or ONKEY or KEY for more XB changes created
          by RXB to speed up the programs and make them easier to 
          read and write.
 



          KEY            subprogram                            PAGE  K1
          -------------------------------------------------------------
 
          Format         CALL KEY(key-unit,return-variable,
                         status-variable[,...])
 
                         CALL KEY(string,key-unit,return-variable,
                         status-variable[,...])
 
                         CALL KEY(string-variable,key-unit,return-
                         variable,status-variable[,...])
 
          Description
 
          See EXTENDED BASIC MANUAL page 109
          RXB has added auto repeat features.
           Strings or string variables can now be added to KEY to lock
          out any other keys. The strings can be empty or up to 255 in
          length. The string function halts program execution unlike a
          normal key routine similar to ACCEPT or INPUT do.
 
          Programs
 
          This line scans both joysticks| >100 CALL JOYST(1,X,Y,2,XX,YY)
          This line scans both of the   | >110 CALL KEY(1,F,S,2,FF,SS)
          fire buttons & split keyboard.|
                                        |
          Try this for fun.             | >CALL KEY(CHR$(2),0,K,S)
           (HINT: FCTN 4)               |
                                        |
          Add this line to programs.    | >100 CALL KEY("YNyn",0,K,S)
                                        |
          Suspends program until key is | >100 CALL KEY("",0,K,S)
          pressed. (any key)            |
                                        |
          Suspends program until ENTER  | >100 CALL KEY(CHR$(13),0,K,S)
          is pressed.                   |
                                        |
          Suspends program until the    | >100 A$="123"
          key from string A$ is used.   | >110 CALL KEY(A$,0,KV,STATUS)
                                        |
          Suspends program until YES is | >100 CALL KEY("Y",0,K1,S1,"E"
          typed in.                     |  ,0,K2,S2,"S",0,K3,S3)
                                        |



          LIST           command                               PAGE  L1
          -------------------------------------------------------------
 
          Format         LIST
 
                         LIST "device name"
 
                         LIST "device name":line length:start line-
                         end line
 
          Description
 
          The LIST command is the same as per Extended Basic Manual
          page 114. The LIST routine has been modified to allow the
          line length to be output to a device. The line length can 
          only be used if a device is specified. A colon (:) must 
          follow the line length. If not included in the LIST 
          command, the line length is set to the default of the 
          specified output device.
          The line length can range from 1 to 255. If the length
          specified is outside this range, a Bad Line Number Error is
          reported.
 
          Command
 
          This line outputs to a device.| >LIST "PIO":80:100-120
                                        |
          This line outupts to a device.| >LIST "RS232.BA=1200":132: 
                                        |
          This a dummy line.            | >100 ! TEST OF LIST
          Another dummy line.           | >110 ! TEST OF LIST
                                        |



          LOAD           command                               PAGE  L2
          -------------------------------------------------------------
 
          Format         CALL LOAD(address,value[,...])

                         CALL LOAD("access-name"[,...])
 
          Description
 
          The LOAD subprogram is used along with INIT, LINK, and PEEK,
          to access assembly language subprograms. The LOAD subprogram
          loads an assembly language object file or direct data into 
          the Memory Expansion for later execution using the LINK 
          statement.

          The LOAD subprogram can specify one or more files from which
          to load object data or lists of direct load data, which
          consists of an address followed by data bytes. The address 
          and data bytes are seperated by commas. Direct load data 
          must be seperated by file-field, which is a string expression
          specifing a file from which to load assembly language object 
          code. File-field may be a null string when it is used merely
          to seperate direct load data fields. Use of LOAD subprogram 
          wth incorrect values can cause the computer to cease to 
          fuction and require turning it off and back on. 

          Assembly language subprogram names (see LINK) are included 
          in the file. 
          
          RXB does not check for Memory Expansion if address, values are 
          loaded. EXAMPLE: CALL LOAD(-32000,15) {-32000 = >8300 hex}
          This was a oversight by original XB teams. This change
          allows a poke into memory with or without Memory Expansion.
          If Object Code File is loaded a CALL INIT is still checked. 
          
 

 



          MAGNIFY        subprogram                            PAGE  M1
          -------------------------------------------------------------
 
          Format         CALL MAGNIFY(magnification-factor[,...})

          Description
 
          See EXTENDED BASIC MANUAL PAGE 118 for more data. A added
          feature to MAGNIFY is using a comma more switching of the
          sprite can be done, like instantly enlarge and reduce a
          sprite for a shadow effect in XB.
 
          Programs
          * See EXTENDED BASIC MANUAL.
 
          The program to the right will | >100 CALL CLEAR :: X=190
          will set up 3 sprites to be on| >110 CALL SPRITE(#1,65,2,9,X,
          the same vertical plane.      |  20,0,#2,66,2,9,X,30,0,#3,67,
                                        |  2,9,X,-20,0)
          MAGNIFY enlage and reduce it. | >120 CALL MAGNIFY(1,2,1)
          This is a delay loop.         | >140 FOR D=1 TO 2000::NEXT D
          STOP turns off sprite motion. | >150 GOTO 120 
                                        |
          Clear screen and set up the   | >100 CALL CLEAR
          Loop to create sprites.       | >110 FOR L=1 TO 28::CALL SPRI
                                        |  TE(#L,L+65,2,L,L,-L,L) ::
                                        |  NEXT L
          Use MAGNIFY for effects.      | >120 CALL MAGNIFY(3,4,3,4)::
                                        |  GOTO 120
 
          Options
 
          While characters 144 to 159 are being used, you cannot use
          sprites. 



          MAP (SAMS)     option for subprogram                 PAGE  M2
          -------------------------------------------------------------
 
          Format         CALL SAMS("MAP"[,...])
 
 
          Description
 
          The SAMS MAP command will only work with a AMS memory card. 
          MAP MODE on the AMS card means the mapper registers are
          turned on so they can be changed. But even with the mapper on
          unless the read/write lines are on no mappers will appear to
          be at the DSR address. SAMS ON turns on read/write mapper 
          registers.
          Then a LOAD or SAMS can change the memory pages.
          See docs MANUAL-SAMS for examples of memory maps. Also run
          SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.
 
          Programs
 
          This turns on map mode.       | >100 CALL SAMS("MAP")
          This turns on read/write.     | >110 CALL SAMS("ON")
          This fetches map register 2.  | >120 CALL PEEK(16388,BYTE)
          This turns off read/write.    | >130 CALL SAMS("OFF")
          This turns on pass mode.      | >140 CALL SAMS("PASS")
          This prints the page from map | >150 PRINT "Register 2 PAGE#"
           mode in register 2.          |  ;BYTE
                                        |

          The above program will print out whatever SAMS page is
          presently stored in SAMS map register 2.

          It is recommended that CALL SAMS("MAP") only be used to 
          check SAMS pages with CALL PEEK. CALL SAMS is much more easy
          to use to manage AMS memory.



          MERGE          subprogram                            PAGE  M3
          -------------------------------------------------------------
 
          Format         MERGE "device.filename"

          Description
 
          See EXTENDED BASIC MANUAL PAGE 122 for more data. The only 
          reason for this page in RXB is a problem with SIZE and the
          MERGE command breaks SIZE from working as they both use the
          same address to record XB RAM END ADDRESS. This problem
          will only happen if you use PRAM to change program normal 
          start and end locations of XB RAM. Please never use the
          merge command if you have changed XB RAM with PRAM command.

 
          Command
 
          Change locations to start XB  | >CALL PRAM(-12288,-16384)
          to >C000 and end to >D000     | 
          This will load a program.     | >OLD DSK1.TEST
          This will merge both programs.| >MERGE DSK1.TEST2
          SIZE will report wrong program| >SIZE 
          space incorrectly             |



          MOD            subprogram                            PAGE  M4
          -------------------------------------------------------------
 
          Format         CALL MOD(number,divisor,quotiant,remainder
                         [,...})

          Description
 
          The MOD command will make a MODULO FACTOR of a number and 
          divisor to produce a quotiant and remainder. MOD command
          will only factor numbers from -32678 to 32767 larger values
          will be clipped by the internal integer format. Also if the 
          number is 0 or divisor is 0 a error of bad value will
          result as you can not divide 0 by anything or anything by 0.
 
          Programs
 
          Number=10 and Divisor=3       | >100 N=10 :: D=3
          Do MOD on values with results | >110 CALL MOD(N,D,Q,R)
          Print Q and R values on screen| >120 PRINT Q,R
          N=number,D=divisor,Q=Quotiant |
          and R=remainder               | 
                                        |
          Divide 32767/3                | >100 CALL MOD(32767,3,Q,R)
          Show results                  | >110 PRINT Q,R
          Q=10922 and R=1               |
                                        | 
          Divide -32768/3               | >100 CALL MOD(-32768,3,Q,R)
          Show results                  | >110 PRINT Q,R
          Q=10922 and R=2               | 



          MOTION         subprogram                            PAGE  M5
          -------------------------------------------------------------
 
          Format         CALL MOTION(#sprite-number,row-velocity,
                         column-velocity[,...])
 
                         CALL MOTION(ALL,row-velocity,column-velocity
                         [,...])
 
                         CALL MOTION(STOP[,...])
 
                         CALL MOTION(GO[,...])
 
          Description
 
          See EXTENDED BASIC MANUAL PAGE 125 for more data. A added
          feature to MOTION is STOP (disable sprite movement) and GO 
          (enable sprite movement). Also ALL that affects all sprites.
 
          Programs
          * See EXTENDED BASIC MANUAL.
 
          The program to the right will | >100 CALL CLEAR :: X=190
          will set up 3 sprites to be on| >110 CALL SPRITE(#1,65,2,9,X,
          the same vertical plane, and  |  20,0,#2,66,2,9,X,30,0,#3,67,
          MOTION will stop all sprites. |  2,9,X,-20,0)
          GO turns on sprite motion.    | >120 CALL MOTION(GO)
          This is a delay loop.         | >140 FOR D=1 TO 2000::NEXT D
          STOP turns off sprite motion. | >150 CALL MOTION(STOP)
          This is a delay loop.         | >160 FOR D=1 TO 2000::NEXT D
          Change #3 motion direction, GO.| >170 CALL MOTION(#3,10,10,GO)
          This is a delay loop          | >180 FOR D=1 TO 2000::NEXT D
          Continue program.             | >190 GOTO 120
                                        |
          Clear screen and set up the   | >100 CALL CLEAR::A(0)=-127 ::
           variables A(0) and A(1)      |   A(1)=127
          Loop to create sprites.       | >110 FOR L=1 TO 28::CALL SPRI
                                        |  TE(#L,L+65,2,L,L,-L,L) ::
                                        |  NEXT L
          Use MOTION ALL to change the  | >120 CALL MOTION(ALL,A(RND)*R
           sprite velocities.            |  ND,A(RND)*RND)::GOTO 120
 
          Options
 
          While characters 144 to 159 are being used, you cannot use
          sprites. Notice that CALL MOTION(STOP,#1,44,-87) is valid.



          MOVE           command                               PAGE  M6
          -------------------------------------------------------------
 
          Format      MOVE start line-end line,new start line,increment
 
          Description
 
          The MOVE command is used to move a program line or block of
          program lines to another location in the program. The block
          of lines to be moved is defined by start line number and
          end line number. If either of these numbers are omitted, the
          defaults are the first program line and the last program line.
          However, at least one number and a dash must be entered (both
          cannot be omitted), and there must be at least one valid 
          program line between start line number and end line number. 
          To move one both the start line number and end line number 
          are the same. If any of the above conditions are not met, a 
          Bad Line Number Error will be reported. The new start line 
          number defines the new line number of the first line in the 
          moved segment. When the block is moved it will be moved. If 
          not, a Bad Line Number Error message is reported. This 
          problem can be corrected by using a smaller increment, or
          by using RES to open up space for the segment. A Bad Line
          Number Error also results if the renumbering process would
          result in a line number higher than 32767. Although moving 
          lines within the program does not increase the size of the  
          program, this command does require 4 bytes of the program 
          space for line moved. This memory use is temporary, but it 
          must be available in order to move the block. If sufficient
          memory is not available a Memory Full Error results and no
          lines are moved. This problem can usually be worked around 
          by moving the block a few lines at a time.Before the block 
          of lines is moved any open files are closed and any 
          variables are lost.
 
          Commands
 
          Move lines 100 thru 180 to    | >MOVE 100-180,1000,5
          line 1000, increment by 5.    |
          Moves lines 40 thru last line | >MOVE 40-,120,
          to line 120, increment by 10. |
          Moves line 150 to line 110    | >MOVE 150-150,1110
          This line moves first program | >MOVE -800,32220,2
          line thru line 800 to line    |
          32220, and increment by 2.    |



          MOVES          subprogram                            PAGE  M7
          -------------------------------------------------------------
 
          Format         CALL MOVES(type$,bytes,string-variable,string-
                         variable[,...])
 
                         CALL MOVES(type$,bytes,from-address,to-address
                         [,...])
 
                         CALL MOVES(type$,bytes,from-address,string-
                         variable[,...])
 
                         CALL MOVES(type$,bytes,string-variable,to-
                         address[,...])
 
                         CALL MOVES(string-variable,number,string-
                         variable,string-variable[,...])
 
          Description
 
          The MOVES subprogram moves (copies) FROM TO the amount of
          bytes specified using the memory type string. MOVES does not
          physically move memory but copies it. MOVES can RIPPLE a 
          byte thru memory by the from-address being one byte less than
          the to address. The type$ below specifies what type of memory
          is being moved and to what other type of memory it is moved
          into. The bytes are 255 maximum if being moved into a string-
          variable. MOVES address range is from -32768 to 0 to 32767
          As MOVES mostly works with string-variables see the Extended
          Basic Manual page 41. MOVES will error out with * BAD VALUE 
          IN ###* in a program if the string variable length exceeds
          255, or if the number of bytes exceeds 255.
 
                      type$                TYPE OF MEMORY
                      ~~~~~                ~~~~~~~~~~~~~~~
 $ ------------- STRING-VARIABLE
 V ------------- VDP ADDRESS
 R ------------- RAM ADDRESS
 G ------------- GRAM ADDRESS
 *NOTE: upper case only for type as lower case are ignored.

 VDP address are from 0 to 16384 (>0 to >3FFF)

 MOVES PAGE M8

 RAM may be moved but not into ROM, and that you may move
 memory into GRAM but not GROM. You can copy or move memory
 from ROM or GROM. Also note that any devices that use phony
 GRAM will not work with MOVES as these devices don't use the

 Programs

 Line 100 has the type$ string.| >100 X$="VV"
 Line 110 thus uses type$ 0 VDP| >110 CALL MOVES(X$,767,1,0)
 to VDP. 767 bytes are moved. A|
 VDP from-address of 1 and a |
 VDP to-address of 0. Will use |
 a ripple effect of moving all |
 screen bytes over one address.|
 |
 Line 100 copies entire screen | >100 CALL MOVES("VR",768,0,81
 into lower 8K. | 92)
 |
 Line 110 clears the screen. | >110 CALL CLEAR
 Line 120 copies entire screen | >120 CALL MOVES("VR",768,0,90
 into lower 8K. | 00)
 Line 130 copies from lower 8K | >130 CALL MOVES("RV",768,8192
 to screen, then again. GOTO | ,0,"RV",768,9000,0) :: GOTO
 makes it an endless loop. | 130
 |
 Line 100 sets up loop. Counts | >100 FOR G=-32768 TO 32767
 from -32768 to 0 to 32767 or |
 (HEX >8000 to >0000 to >7FFF) |
 Line 110 move GRAM/GROM to | >110 CALL MOVES("GV",8,G,1024)
 VDP. 8 bytes to be moved. GA |
 is counter. 1024 is decimal |
 address of space character in |
 VDP pattern table. |
 Line 120 completes loop. | >120 NEXT G
 |
 |
 Loop address VDP | >100 FOR V=0 TO 16384
 Load that 8 bytes into space | >110 CALL MOVES("VV",8,V,1024)
 Loop back | >120 NEXT V
 |

 MOVES PAGE M9

 Programs

 Loop address RAM | >100 FOR R=_32768 to 32767
 Load that 8 bytes into space | >110 CALL MOVES("RV",8,R,1024)
 Loop back | >120 NEXT R
 |
 Line 100 sets string-variable.| >100 I$=RPT$("I",255)
 Line 120 type$ specifies I$ | >110 CALL MOVES("$V",55,I$,0)
 to VDP. 55 bytes are moved. |
 Line 120 copies string J$ to | >120 CALL MOVES("$R",255,J$,8
 into lower 8K, then string I$ | 192,"$R",255,I$,8492)
 into lower 8K. |
 Line 130 copies string I$ to | >130 J$=I$:: PRINT J$: : I$
 into J$. Eliminates old J$. |
 Then prints them. |
 Line 150 copies from lower 8K | >140 CALL MOVES("R$",255,8192
 to J$, then from lower 8K at | ,J$,"R$",255,8492,I$) :: PRI
 8492 into I$ thus restoring | NT J$: :I$
 both strings and printing them|
 thus a way to save stings. |
 |
 Line 100 sets up loop. Counts | >100 FOR GA=-32768 TO 32767
 from -32768 to 0 to 32767 or |
 (HEX >8000 to >0000 to >7FFF) |
 Line 110 moves type$ GRAM/GROM| >110 CALL MOVES("G$",8,GA,H$)
 to VDP. 8 bytes to be moved. |
 GA is counter. H$ is string |
 for storing data found. |
 Line 120 prints H$ on screen. | >120 PRINT H$
 Line 130 next loop | >130 NEXT GA

 Options
 Dependent on Assembly Language programmers and the RXB
 programs that are developed. MOVES is good for replacing those
 CALL LOAD loops. It also provides a means to rewrite XB while
 running XB instead of rewriting MERGE files then loading
 them. Future devices benefit from MOVES as it can copy or move
 different types of memory directly from or to them.

 NEW command or subprogram PAGE N1

 Format NEW

 CALL NEW

 Description

 The NEW command is the same as the EXTENDED BASIC MANUAL
 page 126. NEW can only be used from edit mode. But now
 CALL NEW can be called from program mode. As expected
 all values are reset and all defined characters become
 undefined. Any open files are closed. Characters 32 to 95
 are reset to their standard definitions. The TRACE and
 BREAK commands are canceled. The program is erased from
 memory.

 Command

 The line to the right will | >NEW
 reset memory for XB. |

 Programs

 The program to the right will | >100 CALL NEW
 reset memory for XB. |
 |

 OFF (SAMS) option for subprogram PAGE O1

 Format CALL SAMS("OFF")

 Description

 SAMS("OFF") command will only work with a SAMS memory card.
 The read/write lines to the AMS mapper registers are turned
 off so they will not be changed. Any PEEK or LOAD to the DSR
 space will be zero after the SAMS("OFF") command. They can't
 be read/written to. See docs MANUAL-AMS for examples of
 memory maps.
 Also run SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

 Programs

 This turns on read/write. | >100 CALL SAMS("ON")
 This fetches map register 2. | >110 CALL PEEK(16388,BYTE)
 This turns off read/write. | >120 CALL SAMS("OFF")
 This turns on pass mode. | >130 CALL SAMS("PASS")
 This prints the page from map | >140 PRINT "Register 2 PAGE#"
 mode in register 2. | ;BYTE
 |

 The above program will print out initialized SAMS page 2 in
 register 2.

 It is recommended that CALL SAMS("OFF") only be used to
 protect the AMS mapper registers from being molested by
 programs that could access the AMS. CALL SAMS is more
 easy to use to manage SAMS memory as SAMS always turns off
 the SAMS read/write registers like SAMS("OFF") does.

 ON (SAMS) option for subprogram PAGE O2

 Format CALL SAMS("ON")

 Description

 SAMS("ON") command will only work with a SAMS memory card.
 The read/write lines to the SAMS mapper registers are turned
 on so they can be changed. Any PEEK or LOAD to the DSR space
 can then be used to change the mapper registers or read them.
 See docs MANUAL-SAMS for examples of memory maps. Also run
 SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

 Programs

 This turns on read/write. | >100 CALL SAMS("ON")
 This loads 9 in map register 2| >110 CALL LOAD(16388,9)
 This turns off read/write. | >120 CALL SAMS("OFF")
 This loads values in lower 8K.| >130 CALL LOAD(8192,1,2,3,4)
 This turns on pass mode. | >140 CALL SAMS("PASS")
 This peeks values in lower 8K.| >150 CALL PEEK(8192,A,B,C,D)
 This prints values. | >160 PRINT A;B;C;D
 This turns on map mode. | >170 CALL SAMS("MAP")
 This turns on read/write. | >180 CALL SAMS("ON")
 This loads 2 in map register 2| >190 CALL LOAD(16388,2)
 This turns off read/write. | >200 CALL SAMS("OFF")
 This peeks values in low page.| >210 CALL PEEK(8192,A,B,C,D)
 This prints values. | >220 PRINT A;B;C;D
 |

 It is recommended to use CALL SAMS("ON") only for when a
 CALL PEEK is used to check a mapper register value.
 CALL SAMS manages AMS mapping much better.

 ONKEY subprogram PAGE O3

 Format CALL ONKEY(string,key-unit,return-variable,
 status-variable) GOTO line-number[,...]

 CALL ONKEY(string-variable,key-unit,
 return-variable,status-variable)
 GOTO line-number[,...]

 Description

 ONKEY compares a string or string-variable characters one at
 a time to the key return-variable until a match is found.
 The string length may be longer then the number of GOTO
 line-number list. But a error results if that key is pressed
 as no line-number corresponds with the position of the key.
 If the string length is less than the number of GOTO line-
 numbers then the extra GOTO line-numbers are not used.
 The position of the characters in the string correspond to
 the GOTO line-number in the list. i.e. string "12345"
 GOTO 1,2,3,4,5 in the example:

 CALL ONKEY("12345",0,K,S) GOTO 10,20,30,40,50
 The key pressed like say 3 means line 30 will be used.

 Another example:
 10 CALL ONKEY("Test",0,K,S) GOTO 22,29,34,41 :: GOTO 10
 If T is pressed then 22 is used.
 If e is pressed then 29 is used.
 If s is pressed then 34 is used.
 If t is pressed then 41 is used.

 If no key pressed GOTO 10 to repeat line.

 ONKEY subprogram PAGE O4

 Programs

 This line accepts a key> | >100 CALL ONKEY("123",0,K,S)
 | GOTO 120,130,140
 Keep scanning the key. | >110 GOTO 100
 First line. | >120 PRINT "ONE"::GOTO 100
 Second line. | >130 PRINT "TWO"::GOTO 100
 Third line. | >140 PRINT "THREE"::GOTO 100

 |
 Using GOSUB | >100 GOSUB 110::GOTO 100
 Key scan. | >110 CALL ONKEY("YN",3,K,S)
 | GOTO 120,130
 First line. | >120 PRINT "YES"::RETURN
 Second line. | >130 PRINT "NO"::RETURN
 |
 The above program both act like ON GOTO with the key
 selecting in the string the position and line number.

 PASS (SAMS) option for subprogram PAGE P1

 Format CALL SAMS("PASS")

 Description

 SAMS("PASS") command will only work with a SAMS memory card.
 PASS MODE on the SAMS card means the mapper registers are not
 on. This is the normal mode of the SAMS. No extra memory is
 is available or used. This renders the SAMS like a normal 32K
 card. See docs MANUAL-SAMS for examples of memory maps. Also
 run SAMS-TEST or SAMS-SAVE or SAMS-LOAD programs.

 Programs

 This turns on read/write. | >110 CALL SAMS("ON")
 Load 37 into map register 2. | >120 CALL LOAD(16388,37)
 This turns off read/write. | >130 CALL SAMS("OFF")
 This turns on pass mode. | >140 CALL SAMS("PASS")
 |

 SAMS("PASS") is mainly used to turn off SAMS or protect the
 SAMS pages from being used or to behaves like a normal 32K
 when the SAMS is not being used.

 PATTERN subprogram PAGE P2

 Format CALL PATTERN(#sprite-number,character-value
 [,...])

 Description

 See EXTENDED BASIC MANUAL page 142 for more data.
 Now 30 (CURSOR) and 31 (EDGE CHARACTER) and 144 to 159 may
 used if only the top highest sprite numbers are used. For
 example you can not use sprite #1 if you are using characters
 143 to 146 to define a sprite pattern, but you could use
 sprite #28 instead with no issues. Thus some care must be
 taken to use all characters from 144 to 159 when using sprites.
 But the advantage is now you can use 30 to 159 in RXB.

 CALL PATTERN just allows Sprite patterns not characters.

 Options
 Sprites may not be used if characters 144 to 159 are being
 redefined for use.

 PEEKG subprogram PAGE P3

 Format CALL PEEKG(address,numeric-variable-list[,...])

 Description

 The PEEKG command reads data from GROM into the variable(s)
 specified. It functions identical to the regular EXTENDED
 BASIC PEEK command page 143. Except it reads from GROM/GRAM.
 GROM or GRAM address above 32767 must be converted to a
 negative number by subtracting 65536 from the desired
 address. Use CALL HEX to do this.

 Programs

 The program to the right will | >100 CALL PEEKG(767,B)
 read a byte from GROM. |
 |
 Address loop counter | >100 FOR D=-32768 TO 32767
 PEEK Grom address value. | >110 CALL PEEG(D,X)
 Convert to HEX | >120 CALL HEX(A,H$,X,B$)
 Show address and value. | >130 PRINT "Address:";H$,
 | D:"VALUE:";B$,X
 Loop. | >140 NEXT D
 |

 PEEKV subprogram PAGE P4

 Format CALL PEEKV(address,numeric-variable-list[,...])

 Description

 The PEEKV command reads data from VDP into the variable(s)
 specified. It functions identical to the regular EXTENDED
 BASIC PEEK command page 143. Except it reads from VDP.
 The VDP address should not exceed 16384 in a TI with a 9918
 VDP chip, 9938 or 9958 VDP chips can go the full 32767.
 VDP addresses above 32767 must be converted to a negative
 number by subtracting 65536 from the desired address. Also
 whenever a value is peeked or poked to the screen a screen
 offset is present. 96 must be subtracted from or added to the
 value to correct it.

 Programs

 The program to the right will | >100 CALL PEEKV(767,B)
 read a byte from VDP and put |
 it into variable B. |
 This line will print it. | >110 PRINT B-96
 |
 Address loop counter | >100 FOR D=0 TO 16383
 PEEK Grom address value. | >110 CALL PEEV(D,X)
 Convert to HEX | >120 CALL HEX(A,H$,X,B$)
 Show address and value. | >130 PRINT "Address:";H$,
 | D:"VALUE:";B$,X
 Loop. | >140 NEXT D
 |

 PLOAD subprogram PAGE P5

 Format CALL PLOAD(memory-boundry,"access-name")

 CALL PLOAD(contant,string-variable)

 Description

 The PLOAD subprogram loads ONLY program image files created
 by PSAVE. PLOAD is the opposite of PSAVE. PLOAD is a faster
 version of CALL LOAD. PLOAD has the speed of a hidden loader
 and is much easier to use. PLOAD loads any 4K boundry in 32K.
 Memory boundries are 2, 3, A, B, C, D, E, F (upper case).
 i.e. 2 is >2000 or 3 is >3000 or A is >A000 up to F is >F000
 Removing the zeros made more sense then adding 3 zeros.
 Unlike CALL LOAD the PLOAD and PSAVE subprogram will work
 without CALL INIT being used first. Remember to turn on the
 interrupts if the program has them. Or the program support
 will not work. See ISROFF and ISRON.
 NOTE: 4K of VDP memory MUST be free for PLOAD to function or
 a memory full error will result. Always place the
 PLOAD command at the top of the RXB program.

 Programs

 This line loads a previously | >100 CALL PLOAD(2,"DSK2.MOUSE
 saved programs image files. | ",3,"DSK2.MOUSE2")
 This line turns on the mouse | >110 CALL LINK("MSON")
 (program would continue here)|
 |
 This line load a previously | >100 CALL PLOAD(B,"DSK1.DUMP"
 saved program image file. |)
 This line turns on interrupt | >110 CALL ISRON(16384)
 within program. |
 This line links to support | >120 CALL LINK("DUMPIT") !
 address DUMPIT routine. | link to Program Support
 |

 PLOAD subprogram PAGE P6

 PLOAD is faster then CALL LOAD as it loads Program Image vs
 LOAD which is stuck with slow uncompressed DF 80 files.

 Options
 SAMS users will find this a easy way to load RXB AMS support
 into lower 8K.
 EXAMPLE:
 >100 Z$="DSK1.PAGE"
 >110 FOR L=0 TO 15 STEP 2
 >120 CALL SAMS(2,L,3,L+1)
 >130 CALL PLOAD(2,Z$&STR$(L),3,Z$&STR(L+1))
 >140 NEXT L
 >150 CALL XB("DSK1.MAINPROGRAM",1)

 The above program would load RXB SAMS pages 0 to 15 into
 SAMS memory from files named PAGE0 to PAGE15 on disk 1.
 Then would set CALL FILES 1 and RUN "DSK1.MAINPROGRAM"
 with 64K of Assembly support for RXB. (16x4K=64K)

 See SAMS, ISROFF, ISRON, EXECUTE, and MOVES.

 POKEG subprogram PAGE P7

 Format CALL POKEG(address,numeric-variable-list[,...])

 Description

 The POKEG command writes the data in the numeric variable
 list to GRAM at the specified address. It functions identical
 to the EXTENDED BASIC command LOAD page 115. Except that it
 writes to GRAM. GROM or GRAM addresses above 32767 must be
 converted to a negative number by subtracting 65536 from the
 desired address. CALL HEX is recommended for this.

 Programs

 The program to the right will | >100 CALL POKEG(1001,128)
 write 128 to GRAM address 1001|
 |

 POKER subprogram PAGE P8

 Format CALL POKER(vdp-number,numeric-variable[,...])

 CALL POKER(numeric-variable,number[,...])

 Description

 The POKER command writes to vdp register a byte value. Only
 registers 0 to 63 are valid. The byte value ranges 0 to 255.
 The number of Registers were increased to 63 VDP Registers
 for use with F18 register set.

 Programs

 This sets TEXT mode. | >100 CALL POKER(7,244,1,240)
 This is a delay loop. | >110 FOR L=1 TO 500 :: NEXT L
 This sets MULTI COLOR mode | >120 CALL POKER(1,232)
 This is a delay loop. | >130 FOR L=1 TO 500 :: NEXT L
 This sets BIT MAP mode. | >140 CALL POKER(0,2,1,2)
 This is a delay loop. | >150 FOR L=1 TO 500 :: NEXT L
 This sets NORMAL XB mode. | >160 CALL POKER(0,0)
 This resets memory. | >170 CALL NEW

 POKEV subprogram PAGE P9

 Format CALL POKEV(address,numeric-variable-list[,...])

 Description

 The POKEV command writes data to VDP into the address
 specified. It functions identical to the regular EXTENDED
 BASIC PEEK command page 143. Except it reads from VDP.
 The VDP address should not exceed 16384 in a TI with a 9918
 VDP chip, 9938 or 9958 VDP chips can go the full 32767.
 VDP addresses above 32767 must be converted to a negative
 number by subtracting 65536 from the desired address.
 CALL HEX is recommended for this.
 Also whenever a value is poked or peeked to the screen a
 screen offset is present. 96 must be subtracted from or added
 to the value to correct it.

 Programs

 The program to the right will | >100 CALL POKEV(767,65+96)
 write A at address 767. |
 |

 PRAM subprogram PAGE P10

 Format CALL PRAM(start-RAM-address,end-RAM-address)

 Description

 The PRAM command changes the location of the Start and End
 of XB RAM program space. Normally XB RAM is start address
 is >FFE7 and end address is >A040 in hex so the PRAM command
 allows changing this location to as low as 1 byte of XB RAM
 PROGRAM SPACE.
 Any location from >A000 to >FFFF is a valid change in PRAM.
 This command has no effect on Lower 8K Assembly RAM.
 Use of PRAM is for control of XB RAM space and XB programs
 can reside anywhere in the upper 24K RAM locations. Combined
 with PSAVE and PLOAD assembly can be utilized in upper 24K.

 Programs

 This line is comment. | >100 ! CALL PRAM(start-addres
 | s,end-address) 12K size
 Clear screen. | >110 CALL CLEAR
 Show size, delay, clear screen| >120 SIZE::CALL KEY("",5,K,S)
 Display it. | >130 PRINT "CALL PRAM(-25,-24
 | 576)":">E000->B000 =12K RAM"
 Change locations to start XB | >140 CALL KEY("",5,K,S)::CALL
 to >E000 and end XB to >B000 | PRAM(-8192,-20480)
 |
 This defauts to what ever the | >CALL PRAM(0,0)
 previous values were same as | >SIZE
 nothing was called |
 |
 Change locations to start XB | >CALL PRAM(-12288,-16384)
 to >C000 and end to >D000 | >SIZE
 |
 Change locations to start XB | >CALL PRAM(-8192,-12288)
 to >E000 and end XB to >E000 | >SIZE
 |

 PSAVE subprogram PAGE P11

 Format CALL PSAVE(memory-boundry,"access-name")

 CALL PSAVE(constand,string-variable)

 Description

 The PSAVE subprogram saves ONLY program image files to be
 used for PLOAD. PSAVE is the opposite of PLOAD. PSAVE has
 the speed of a hidden loader without the hassle.
 PLOAD saves any 4K boundry from 32K.
 Memory boundries are 2, 3, A, B, C, D, E, F (upper case).
 i.e. 2 is >2000 or 3 is >3000 or A is >A000 up to F is >F000
 Removing the zeros made more sense then adding 3 zeros.
 Unlike CALL LOAD the PLOAD and PSAVE subprogram will work
 without CALL INIT being used first.
 To save a program with hidden loaders just break program
 after loading is complete and type:
 CALL PSAVE(2,"DSK#.NAME1",3,"DSK#.NAME2") ! 2 4K of lower 8K
 Remember to check for interrupts or the program will not work
 after loading with PLOAD. See ISRON and ISROFF.
 NOTE: 4K of VDP memory MUST be free for PSAVE to function or
 a memory full error will result. Always place the PSAVE
 command at the top of the RXB program.

 Programs

 Initialize lower 8K. | >100 CALL INIT
 Load the assembly support. | >110 CALL LOAD("DSK1.MSETUPO")
 Load the assembly support. | >120 CALL LOAD("DSK1.HDSR")
 Turn on the mouse setup. | >130 CALL LINK("MSETUP")
 BSAVE 2 of 4K sections of | >140 CALL PSAVE(2,"DSK2.MOUSE1
 lower 8K. | ",3,"DSK2.MOUSE2")
 |

 PSAVE subprogram PAGE P12

 Procedure for hidden loaders.|
 Loads program on disk 1 | >CALL XB("DSK1.LOAD")
 Break program. | PRESS FCTN 4 to break program.
 Get address of interrupts. | >CALL ISROFF(I)
 See if they are on. | >PRINT I
 Save the programs to disk. | >CALL PSAVE(2,"DSK2.EXAMPLE1",
 | 3,"DSK2.EXAMPLE2")
 |

 Options
 SAMS users will find this a easy way to save RXB SAMS support
 EXAMPLE:
 >100 Z$="DSK1.PAGE"
 >110 FOR L=15 TO 32 STEP 2
 >120 CALL SAMS(2,L,3,L+1)
 >130 CALL PSAVE(2,Z$&STR$(L),3,Z$&STR$(L+1))
 >140 NEXT L

 The above program would save RXB SAMS pages 16 to 33 into
 8 program image files named PAGE15 to PAGE33 on disk 1.

 See SAMS, ISROFF, ISRON, EXECUTE, and MOVES.

 QUITOFF subprogram PAGE Q1

 Format CALL QUITOFF

 Description

 The QUITOFF command disables the QUIT KEY. The QUIT KEY is
 already disabled upon entering RXB. See QUITON for more data.

 Programs

 The program to the right will | >100 CALL QUITOFF
 turn off the QUIT KEY. |
 |

 QUITON subprogram PAGE Q2

 Format CALL QUITON

 Description

 The QUITON command enables the QUIT KEY. The QUIT KEY is
 already disabled upon entering RXB. QUITON makes the QUIT
 once again functional. You may need to use this command
 before running certain programs that use the QUIT key.

 Programs

 The program to the right will | >100 CALL QUITON
 turn on the QUIT KEY. |
 |

 RANDOMIZE subprogram PAGE R1

 Format RANDOMIZE

 RANDOMIZE SEED

 Description

 The RANDOMIZE command can be found on XB manual page 151 to
 help explain it's use. RXB unlike any other XB produced has
 a feature that makes RND and RANDOMZE different and better.
 When you start up RXB from Title screen a keyboard scan is
 used to select your choices and the time it takes you to press
 a key deternimes random number seed on XB start up. Thus more
 random then other XB variants well unless you use RANDOMIZE or
 RANDOMIZE SEED that would be exactly like other XB versions.
 This is why I would suggest take out or never use RANDOMIZE if
 you want random numbers generated in RXB.

 Program

 Will put hex >3567 into seed | >100 RANDOMIZE
 RND example to prove speed | >110 DIM N(100)
 Counter in a FOR loop | >120 FOR X=1 TO 100
 Load Array with random numbers| >130 N(X)=RND
 Show that number | >140 PRINT N(X)
 Repeat loop till done | >150 NEXT X

 Run this above example in TI BASIC, XB and RXB 2020 to
 show game type results of program results with new RND

 Options
 Random Music programs will sound very very fast.

 RES command PAGE R2

 Format RES (Uses default values)

 RES initial line,increment

 RES initial line,increment,start line-end line

 Description

 The RES command is the same as per Extended Basic Manual page
 155. The RESEQENCE command is deleted. The abbreviation RES is
 the only access name. The RES command now allows a portion of
 the program to be resequenced. This RES DOES NOT REPLACE any
 undefined line numbers with 32767. Any undefined line numbers
 in the program are left as is. This makes it easier to fix if
 a problem is present. RES cannot be used to move lines from
 one location to another inside a program. If the new line
 numbers generated by the RES command would result in a line
 being moved, a Bad Line Number Error is generated. A Bad Line
 Number Error is also reported if there are no valid program
 lines between start line and end line.

 Command

 Lines 10 to 50 are renumbered.| >RES 20,1,10-50
 Line 10 becomes 20, increment |
 is 1. |
 Lines 700-800 are renumbered. | >RES ,5,700-800
 Line 700 becomes 100, |
 increment is 5. |
 Lines 50-80 are renumbered. | >RES ,,50-80
 Line 50 becomes 100, |
 increment is 10. (Default) |
 Lines 1000 to last line are | >RES 1000,,750-
 renumbered. Line 750 becomes |
 1000, increment is 10. |
 Lines to 400 are renumbered. | >RES ,20,-400
 First Line becomes 100 |
 (Default), increment is 20. |
 Line 40 is renumbered 20. | >RES 20,,40
 |

 RMOTION subprogram PAGE R3

 Format CALL RMOTION(#sprite-number[,...])

 CALL RMOTION(ALL[,...])

 Description

 The RMOTION subprogram reverses the row-velocity and
 column-velocity as numbers from -127 to 127. This means that
 RMOTION simply reverses the direction of the sprite specified
 so it goes in the opposite direction it was going in.
 This also means RMOTION ignores 0 and -128, so you can use
 those to bypass RMOTION if you do not want RMOTION to change
 the sprite. The fastest and slowest sprite speeds are never
 affected by RMOTION. This feature adds more power to RMOTION.
 The ALL feature also allows all sprites on the screen to
 reverse all at once. ALL may also be called as many times as
 wanted in a single program line.

 Program

 RMOTION reverses the row- | >100 CALL RMOTION(#1)
 velocity and the column- |
 velocity in sprite-number 1. |
 |
 This line reverses the motion | >100 CALL RMOTION(ALL)
 of all sprites. |
 |
 Line 100 sets up a sprite. | >100 CALL SPRITE(#1,33,2,96,1
 | 8,99,84)
 Line 110 waits for a number | >110 IF RND<.8 THEN 110
 higher than .8 randomly. |
 Line 120 reverses the motion | >120 CALL RMOTION(#1)
 of the sprite. |
 Continues the program. | >130 GOTO 110

 Options
 While characters 144 to 159 are being used, you cannot use
 sprites.

 RND subprogram PAGE R4

 Format RND

 Description

 The RND subprogram in RXB has been replaced with a TI BASIC
 version as the normal XB RND subprogram is hindered with so
 much Floating Point as to make it 3 times slower then the
 TI BASIC version of RND. Extensive testing proves that the
 new RXB RND is many times faster then the previous version.
 There will actually be some programs expecting a particular
 RND pattern of random numbers that will no longer work the
 same as a result of this change. But games will appear more
 random then normal Extended Basic.
 The RANDOMIZE seed still works but the results of the that
 pattern of random numbers will be different then normal XB,
 thus unless absolutely required will be a bigger benefit
 then the cost of this XB previous feature.

 Program

 RND example to prove speed | >100 DIM N(100)
 Counter in a FOR loop | >110 FOR X=1 TO 100
 Load Array with random numbers| >120 N(X)=RND
 Show that number | >130 PRINT N(X)
 Repeat loop till done | >140 NEXT X

 Run this above example in TI BASIC, XB and RXB 2015 to
 show game type results of program results with new RND

 Options
 Random Music programs will sound very very fast.

 ROLLDOWN command or subprogram PAGE R5

 Format CALL ROLLDOWN

 CALL ROLLDOWN(repetition[,...])

 Description

 ROLLDOWN scrolls screen to the down so repetition will
 repeat the scroll number of times to down.

 Programs

 Roll screen down 2 times | >CALL ROLDOWN(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen down | >110 CALL ROLLDOWN
 Repeat the program | >100 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL DOWN"
 Print X$ | >110 PRINT X$
 Roll down 9 times use X$ | >120 CALL ROLLDOWN(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLLEFT command or subprogram PAGE R6

 Format CALL ROLLLEFT

 CALL ROLLLEFT(repetition[,...])

 Description

 ROLLLEFT scrolls screen to the left so repetition will
 repeat the scroll number of times to left.

 Programs

 Roll screen left 2 times | >CALL ROLLLEFT(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen left | >110 CALL ROLLLEFT
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL LEFT"
 Print X$ | >110 PRINT X$
 Roll left 9 times use X$ | >120 CALL ROLLLEFT(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLRIGHT command or subprogram PAGE R7

 Format CALL ROLLRIGHT

 CALL ROLLRIGHT(repetition,[,...])

 Description

 ROLLRIGHT scrolls screen to the right so repetition will
 repeat the scroll number of times to right.

 Programs

 Roll screen right 2 times | >CALL ROLLRIGHT(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen right | >110 CALL ROLLRIGHT
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" ROLL RIGHT"
 Print X$ | >110 PRINT X$
 Scroll right 9 times use X$ | >120 CALL ROLLRIGHT(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 ROLLUP command or subprogram PAGE R8

 Format CALL ROLLUP

 CALL ROLLUP(repetition[,...])

 Description

 ROLLUP scrolls screen to the up so repetition will
 repeat the scroll number of times to up.

 Programs

 Roll screen up 2 times | >CALL ROLLUP(2)
 |
 Prints line | >100 PRINT "SCREEN PRINT"
 Roll screen UP | >110 CALL ROLLUP
 Repeat the program | >120 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL UP"
 Print X$ | >110 PRINT X$
 Roll up 9 times use X$ | >120 CALL ROLLUP(9)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SAMS subprogram PAGE S1

 Format CALL SAMS(address-boundry,page-number[,...])

 CALL SAMS(address-boundry,numeric-variable
 [,...])

 CALL SAMS(command [,...])

 Description

 The SAMS command will only work with a SAMS memory card.
 The address-boundry is a value in Hexadecimal denoted by
 2 is >2000 or 3 is >3000 or A is >A000 or D is >D000
 EXAMPLE: CALL SAMS(3,page-number[,...])
 This 3 stands for >3000 hexidecimal address boundry.
 CALL SAMS uses boundry symbols upper case only.
 i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
 D = >D000, E = >E000 and F = >F000
 SAMS turns on the read/write lines of SAMS mapper registers
 stores the value into the mapper register chosen. Less wasted
 pages results in more memory available.Page numbers can be
 from 0 to 16383 so it is hard to explain this easy.
 See 16383 would be >FFFF hexidecimal 64 Meg SAMS. Pages 0 to
 255 would be a 1 Meg SAMS, Pages 256 to 511 would be a 2 Meg
 SAMS, so on up to page 7935 to 8191 would be 32 Meg SAMS.
 Pages 8192 to 16383 would be above 32K Meg SAMS so RXB 2020
 handles 64 Meg SAMS, but not tested above 32 Meg yet.
 (*Note: 16384 to 32767 would be for above 32 Meg to 64 Meg.)
 A addtional new feature in 2020 RXB SAMS is use of upper 24K
 memory can now be switched, but of course care must be taken
 or will crash XB by removing the program running SAMS from
 upper 24K. Imagine 8 Meg XB program swapping lines.
 The order of changing 4K pages does not matter thus a
 CALL SAMS(A,55,3,34) example is put 4K page 55 SAMS Memory
 at >A000 and 4K page 34 at >3000

 Original SAMS commands like ON, OFF, MAP or PASS still work.
 "ON" turns on Mapper Registers.
 "OFF" turns off Mapper Registers.
 "MAP" turns on Map Mode so pages can be changed.
 "PASS" default mode making the SAMS just like a normal 32K.

 SAMS subprogram PAGE S2

 Example is mixing commands:
 100 CALL SAMS("ON","MAP",2,237,"OFF")
 This turns on SAMS read/write Registers, turns on MAP mode,
 sets 4K page with page 237 than turns off SAMS read/write
 Registers.

 Programs

 This turns on the SAMS mapper.| >110 CALL SAMS("ON")
 This reads low half 8K page. | >120 CALL PEEK(16388,L)
 This reads high half 8K page. | >130 CALL PEEK(16390,H)
 This shows pages used. | >140 PRINT "LOW";L;"HIGH";H
 This loads a assembly program.| >150 CALL LOAD("DSK1.CHAR")
 This changes low/high 4K pages| >160 CALL SAMS(2,16,3,17)
 This loads a assembly program.| >170 CALL LOAD("DSK1.DUMP")
 This changes low/high back. | >180 CALL SAMS(2,L,3,H)
 This uses a routine in CHAR. | >190 CALL LINK("CHAR")
 This changes low/high again. | >200 CALL SAMS(2,16,3,17)
 This uses a routine in DUMP. | >210 CALL LINK("DUMP")
 |
 The above example program shows one RXB program using two
 assembly programs with links for both. Thus only 16K of the
 SAMS was used. 1024K would be 120 assembly support programs
 Compatibility of most software assured in RXB AMS support.

 Options:
 See ON, OFF, MAP and PASS pages in RXB Documents for more
 information on SAMS.

 PAGE S3
 SAMS MAPPER
 **
 The SAMS card has tons of documents as to its function and use.
 So to re-explain these docs would be pointless. Read the docs or
 find some, sorry but the RXB package is already huge.
 In PASS mode the mapper register setup is equivalent to:

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >02 = 02 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >03 = 03 points to >3000 - >3FFF range
 >4014 = 16404 is MR10 = >0A = 10 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >0B = 11 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >0C = 12 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >0D = 13 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >0E = 14 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >0F = 15 points to >F000 - >FFFF range
 (MR=Mapper Register)

 In MAP mode the mapper register setup is equivalent to: EXAMPLE1

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >10 = 16 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >11 = 17 points to >3000 - >3FFF range
 >4014 = 16404 is MR10 = >12 = 18 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >13 = 19 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >14 = 20 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >15 = 21 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >16 = 22 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >17 = 23 points to >F000 - >FFFF range

 (MR=Mapper Register)

 PAGE S4
 SAMS MAPPER

 In map mode the mapper register setup is equivalent to: EXAMPLE2

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004 = 16388 is MR02 = >62 = 98 points to >2000 - >2FFF range
 >4006 = 16390 is MR03 = >63 = 99 points to >3000 - >3FFF range

 >4014 = 16404 is MR10 = >64 = 100 points to >A000 - >AFFF range
 >4016 = 16406 is MR11 = >65 = 101 points to >B000 - >BFFF range
 >4018 = 16408 is MR12 = >66 = 102 points to >C000 - >CFFF range
 >401A = 16410 is MR13 = >67 = 103 points to >D000 - >DFFF range
 >401C = 16412 is MR14 = >68 = 104 points to >E000 - >EFFF range
 >401E = 16414 is MR15 = >69 = 105 points to >F000 - >FFFF range

 (MR=Mapper Register)

 In MAP mode the mapper register setup is equivalent to: EXAMPLE3

 mapper address mapper page num address range
 -------------- ------ -------- -------------
 HEX Dec HEX Dec memory area
 --- --- --- --- -----------
 >4004=16388 is MR02 =>1FF9 = 8185 points to >2000 - >2FFF range
 >4006=16390 is MR03 =>1FFA = 8186 points to >3000 - >3FFF range

 >4014=16404 is MR10 =>1FFB = 8187 points to >A000 - >AFFF range
 >4016=16406 is MR11 =>1FFC = 8188 points to >B000 - >BFFF range
 >4018=16408 is MR12 =>1FFD = 8189 points to >C000 - >CFFF range
 >401A=16410 is MR13 =>1FFE = 8190 points to >D000 - >DFFF range
 >401C=16412 is MR14 =>1FFF = 8191 points to >E000 - >EFFF range
 >401E=16414 is MR15 =>2000 = 8192 points to >F000 - >FFFF range

 (MR=Mapper Register)

 SAVE command PAGE S5

 Format SAVE DSK3.PRGM

 SAVE DSK2.PRGM,IV254

 Description

 The SAVE command functions normally to save XB programs.
 An additional freature is IV254 may be specified after the
 SAVE command to convert to Internal Variable 254 format.
 The IV254 format makes it much more easy to tell an XB
 program from EA programs when cataloging a disk.
 Internal Variable files do take up one sector more then
 XB program format. It should be noted that XB programs
 smaller then 3 sectors can not be saves in IV254 format.

 Command

 Saves to DISK 2 in XB program | >SAVE DSK2.TEST
 image format TEST |
 |
 Saves to disk 3 in XB program | >sAVE DSK3.STUFF,IV254
 Internal Variable 254 named |
 STUFF |
 |
 Saves to WDS1 in dirctory EXB | >SAVE WDS1.EXB.RB,IV254
 XB program Internal Variable |
 254 named RB |
 |

 Options
 Allows better cataloging options for saving XB files.

 SCREEN command or subprogram PAGE S6

 Format CALL SCREEN(color-code[,...])

 CALL SCREEN("OFF"[,...])

 CALL SCREEN("ON"[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 165 for more data.
 RXB has added features of OFF and ON to the SCREEN
 command. OFF turns off the screen display while the ON
 turn the screen back on. Use of OFF command allows for
 writing to screen happens but not visible to user.

 Programs

 Turn screen to white | >100 CALL SCREEN(16)
 |
 Turn off the screen display | >100 CALL SCREEN("OFF")
 Prints line but screen off | >110 PRINT "THE SCREEN IS OFF"
 Waits for any key | >120 CALL KEY("",5,K,S)
 This opens a RS232 port. | >130 CALL SCREEN("ON")
 Prints line but screen on | >140 PRINT "NOW SCREEN ON"
 Waits for any key | >150 CALL KEY("",5,K,S)
 Special effect use of SCREEN | >160 CALL SCREEN(0,2,0,2,0,2)

 Options
 New features allow for some special effects like draw screen
 while screen is off and then pop it to user. Or use of the
 comma to switch colors making some special effects.

 SCROLLDOWN command or subprogram PAGE S7

 Format CALL SCROLLDOWN

 CALL SCROLLDOWN(repetition,string[,...])

 Description

 SCROLLDOWN scrolls screen to the down so repetition will
 repeat the scroll number of times to down, the string will
 only display vertically 24 characters of the string. If the
 string is empty (null) it will just scroll the screen. When
 null string is used this is a down version of PRINT. Unlike
 PRINT it does not allows strings longer then 32 characters.

 Programs

 Scroll down 2 times print DONE| >CALL SCROLDOWN(2,"DONE")
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line | >110 PRINT "SCREEN PRINT"
 Scroll screen down | >120 CALL SCROLLDOWN
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL DOWN"
 Print X$ | >110 PRINT X$
 Scroll down 9 times use X$ | >120 CALL SCROLLDOWN(9,X$)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SCROLLLEFT command or subprogram PAGE S8

 Format CALL SCROLLLEFT

 CALL SCROLLLEFT(repetition,string[,...])

 Description

 SCROLLLEFT scrolls screen to the left so repetition will
 repeat the scroll number of times to left, the string will
 only display vertically 24 characters of the string. If the
 string is empty (null) it will just scroll the screen. When
 null string is used this is a left version of PRINT.

 Programs

 Scroll left 2 times print DONE| >CALL SCROLLLEFT(2,"DONE")
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line | >110 PRINT "SCREEN PRINT"
 Scroll screen left | >120 CALL SCROLLLEFT
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL LEFT"
 Print X$ | >110 PRINT X$
 Scroll left 9 spaces use X$ | >120 CALL SCROLLLEFT(9,X$)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SCROLLRIGHT command or subprogram PAGE S9

 Format CALL SCROLLRIGHT

 CALL SCROLLRIGHT(repetition,string[,...])

 Description

 SCROLLRIGHT scrolls screen to the right so repetition will
 repeat the scroll number of times to right, the string will
 only display vertically 24 characters of the string. If the
 string is empty (null) it will just scroll the screen. When
 null string is used this is a right version of PRINT.

 Programs

 Scrollright 2 times print DONE| >CALL SCROLLRIGHT(2,"DONE")
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line but screen off | >110 PRINT "SCREEN PRINT"
 Scroll screen right | >120 CALL SCROLLRIGHT
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL RIGHT"
 Print X$ | >110 PRINT X$
 Scroll right 9 spaces use X$ | >120 CALL SCROLLRIGHT(9,X$)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SCROLLUP command or subprogram PAGE S10

 Format CALL SCROLLUP

 CALL SCROLLUP(repetition,string[,...])

 Description

 SCROLLUP scrolls screen to the up so repetition will
 repeat the scroll number of times to up, the string will
 only display vertically 32 characters of the string. If the
 string is empty (null) it will just scroll the screen. When
 null string is used this is a up version of PRINT. Unlike
 PRINT it does not allows strings longer then 32 characters.

 Programs

 Scroll up 2 times print DONE | >CALL SCROLLUP(2,"DONE")
 |
 Clear screen for demo | >100 CALL CLEAR
 Prints line but screen off | >110 PRINT "SCREEN PRINT"
 Scroll screen UP | >120 CALL SCROLLUP
 Repeat the program | >130 GOTO 110
 |
 Load X$ string variable | >100 X$=" SCROLL UP"
 Print X$ | >110 PRINT X$
 Scroll up 9 spaces use X$ | >120 CALL SCROLLUP(9,X$)
 Repeat the program | >130 GOTO 100

 Options
 New features allow for some special that can take the place
 of some routines that are slower in XB.

 SIZE command or subprogram PAGE S11

 Format SIZE

 CALL SIZE

 Description

 See EXTENDED BASIC MANUAL PAGE 169 for more data.
 RXB has added many more features to SIZE. RXB shows the
 size and memory address of VDP, RAM and SAMS. Very uselful
 for XB or Assembly progammers. EXAMPLE:

 >SIZE
 11840 Bytes of Stack Free
 24488 Bytes of Program
 8192 Bytes of Assembly
 * PAGE NUMBER = LOCATION *
 2 Page = >2000 - >2FFF
 3 Page = >3000 - >3FFF
 10 Page = >A000 - >AFFF

 11 Page = >B000 - >BFFF
 12 Page = >C000 - >CFFF
 13 Page = >D000 - >DFFF
 14 Page = >E000 - >EFFF
 15 Page = >F000 - >FFFF
 * MEMORY UNUSED and FREE *
 >37D7 VDP Free Address
 >0958 VDP STACK Address
 >FFE7 Program Free Address
 >A040 Program End Address
 >2000 RAM Free Address
 >4000 RAM End Address

 This shows normal XB values but also includes more
 useful things like Assembly free and SAMS pages
 used and where these pages are. Lastly it shows
 VDP STACK location, First free VDP address, XB RAM
 First free address and End address. Lastly first
 free Assembly address and End address used. SAMS size is
 not reported just like Foppy size or hard drive is'nt!

 SIZE command or subprogram PAGE S12

 Format SIZE

 CALL SIZE

 Command

 May only be used from command | >SIZE
 mode. |
 |
 Programs

 May only be used from program | >100 CALL SIZE
 mode. |
 Delay for keypress. | >110 CALL KEY("",0,K,S)
 Set up for Assembly support. | >120 CALL INIT
 Shows memory used including | >130 CALL SIZE
 Assembly space free. |
 Set VDP STACK to >1820 hex. | >140 CALL VDPSTACK(6176)
 Show VDP STACK location. | >150 CALL SIZE
 Delay for keypress. | >150 CALL KEY("",0,S,S)
 Set XB RAM to >A000 hex. | >160 CALL PRAM(-24576)
 Shows 64 more bytes of XB RAM | >170 CALL SIZE
 for use in XB. |

 STOP (MOTION) option for subprogram PAGE S13

 Format CALL MOTION(STOP[,...])

 Description

 The STOP command is a option in the MOTION subprogram.
 STOP does exactly what you would expect, stop all sprite
 motion and freezes the sprites in place.

 Programs

 See MOTION subprogram for examples of use of STOP.

 SWAPCHAR subprogram PAGE S14

 Format CALL SWAPCHAR(character-code,character-code
 [,...])

 Description

 The SWAPCHAR subprogram switches the first character-code
 character definition with the second character-code
 character definition. That means they swap definitions.
 The characters range from 30 to 159.

 Programs

 Line 100 swaps character-code | >100 CALL SWAPCHAR(65,97)
 65 with character-code 97. |
 |
 Line 100 defines character- | >100 CALL CHAR(128,"F0F0F0F0F
 code 128 and character-code | 0F0F0F0",159,"0F0F0F0F0F0F0F
 159. | 0")
 Line 110 swaps them, then will| >110 CALL SWAPCHAR(128,159,32
 swap space with character 128 | ,128)
 Line 120 continues program. | >120 GOTO 110
 |
 Try this one on for weird. | >100 CALL SWAPCHAR(31,32,31,3
 | 2)
 | >110 CALL INVERSE(31)
 | >120 GOTO 100
 |

 SWAPCOLOR subprogram PAGE S15

 Format CALL SWAPCOLOR(character-set,character-set
 [,...])

 CALL SWAPCOLOR(#sprite-number,#sprite-number
 [,...])

 Description

 The SWAPCOLOR subprogram swaps foreground and background
 colors of the first set with the second set. Or swaps the
 first sprite-number color with the second sprite-number
 color. The character-set numbers are given below:

 set-number character-codes
                         ~~~~~~~~~~          ~~~~~~~~~~~~~~~
                               0   ----------  30  to   31
                               1   ----------  32  to   39
                               2   ----------  40  to   47
                               3   ----------  48  to   55
                               4   ----------  56  to   63
                               5   ----------  64  to   71
                               6   ----------  72  to   79
                               7   ----------  80  to   87
                               8   ----------  88  to   95
                               9   ----------  96  to  103
                              10   ---------- 104  to  111
                              11   ---------- 112  to  119
                              12   ---------- 120  to  127
                              13   ---------- 128  to  135
                              14   ---------- 136  to  143
          (also sprite table) 15   ---------- 144  to  151
          (also sprite table) 16   ---------- 152  to  159
 
          



          SWAPCOLOR      subprogram                            PAGE S16 
          -------------------------------------------------------------
 
          Format         CALL SWAPCOLOR(character-set,character-set
                         [,...])
 
                         CALL SWAPCOLOR(#sprite-number,#sprite-number
                         [,...])

          Programs
 
          Swap foreground and background| >100 CALL SWAPCOLOR(15,5)
          colors of set 15 with set 5.  |
                                        |
          Line 100 sets up two sprites  | >100 CALL SPRITE(#1,65,2,99,9
          on screen.                    |  9,9,9,#2,66,16,88,88,22,33)
          Line 110 swaps sprite #1 color| >110 CALL SWAPCOLOR(#1,#2)
          with sprite #2 color.         |
          Continue program.             | >120 GOTO 110



          USER           subprogram                            PAGE  U1
          -------------------------------------------------------------
 
          Format         CALL USER(quoted-string)
 
                         CALL USER(string-variable)
 
          Description
 
          The USER subprogram overrides the normal editor of edit mode
          of XB and reads a DV80 file into the key scan routine as if
          the user was keying it in.
           That means Batch Processing is creating XB programs from
          DV80 files, Editing XB programs, MERGING, Saving, and
          RUNNING XB programs. Also RESequencing, adding lines, or
          deleting lines, and re-writing lines from the DV80 file.
           Every line to be input from the DV80 file MUST END WITH A
          CARRIAGE RETURN! A line of input may be up to 588 characters
          in length. The editor will error out if the crunch buffer is
          full, reporting a *Line Too Long* error. (Over 163 tokens)
           Other errors will be reported but will not stop the process
          of USER continuing to input lines. To find errors in the DV80
          file the input lines are shown on screen as they are input
          into the editor, and errors will be reported. So you must
          observe the screen for errors to test the DV80 file.
           USER will stop after reaching the end of the file. But USER
          can have its operation suspended CALL POKEV(2242,0) will
          halt USER and CALL POKEV(2242,9) will resume USER.
           INPUT and ACCEPT will try to read from USER if it is not
          turned off. On the other hand DV80 files can go directly into
          a INPUT or ACCEPT prompts. Turn off USER to be safe though.
           USER will only report errors upon opening, thus if incorrect
          device or filename then USER reports * USER ERROR * and just
          closes the USER file, thus ending operation of USER.
           Example files are included with RXB to show and explain the
          use of USER. The batch processing USER subprogram opens a new
          world to the RXB programmer. 
          Addtionally new commands like CALL VDPSTACK and CALL PRAM used
          with CALL USER means you can modify the entire XB memory in 
          both VDP and RAM from a BATCH file.
          Possibilities are almost endless!



          USER           subprogram                            PAGE  U2
          -------------------------------------------------------------

          Programs
 
          This line starts USER to use  | >CALL USER("DSK1.FILENAME")
          Batch processing on a file    |
          called FILENAME               |
                                        |
          Line 100 is same as above.    | >100 CALL USER("DSK1.FILE")
          but within a program.         |
                                        |
          Line 100 variable A$ equals a | >100 A$="DSK.VOLUME.FILE"
          String-variable path name.    |
          Line 110 starts USER to use   | >110 CALL USER(A$)
          Batch processing on A$        |
                                        |
          Save this program as LOAD.    | >100 CALL USER("DSK1.BATCH")
                                        |
 
          Here is an example DV80 file you save with the name BATCH.
 
                        ! BATCH file for using 
                        NEW and CALL FILES and RUN. cr
                        cr
                        CALL XB("DSK1.A-PROGRAM",#) cr
                        ! The # is 0 to 15 (see FILES)
 
         The above DV80 file uses cr to mean Carriage Return. And # is
        for the number of files you wish open. A-PROGRAM is the name of
        the XB program that needs a certain number of files open.
 
        Options
        To many to list out. See BATCH for demo.



          VAL            subprogram                            PAGE  V1
          -------------------------------------------------------------
 
          Format         VAL(">0000")
 
 
          Description
 
          The VAL function returns the number equivalent to 
          string-expression. This allows the functions, statements, 
          and commands that act on numbers to be used on
          string-expression. The VAL function is the inverse of the
          STR$ function.
          VAL is on page 188 of Extended Basic manual. RXB modified
          it to use Hexidecimal values with the > (greater sign) to
          specify it from normal decimal numbers.

          *NOTE* NEVER USE A VARIABELE TO ASSIGN HEXIDECIMAL VAL EVER!
          RXB will lock up if you do this: X=VAL(">2000")
          As X is numeric and ">2000" is the string in that command
          line a substitution of 8192 decimal can not be done as XB 
          gets confused about which one can be saved. Instead use the 
          RXB command CALL HEX("2000",X) to assign a variable to HEX.
          ONLY USE VAL(hex-string) with PRINT, LOAD, PEEK, POKE. 
 
          Programs
 
          Line 100 prints on screen     | >100 PRINT VAL(">2000")
          8192                          |
                                        |
          Line 100 loads values 67,39 at| >100 CALL LOAD(VAL(">8300"),
          hex address >8300             |  67,39)
                                        |
          Line 100 peeks values into A  | >100 CALL PEEK(VAL(">2008"),
          and B from hex address >2008  |  A,B) 
                                         

          Options: ONLY USE VAL(hex-string) with PRINT, LOAD, PEEK, POKE. 



          VCHAR          subprogram                            PAGE  V2
          -------------------------------------------------------------
 
          Format         CALL VCHAR(row,column,character-code)
 
                         CALL VCHAR(row,column,character-code,
                         repetition[,...])
 
          Description
 
           See EXTENDED BASIC MANUAL page 188 for more data. The only
          syntax change to VCHAR is the auto-repeat function. Notice the 
          new auto-repeat must have the repetitions used or it gets row
          confused with repetitions. Also RXB HCHAR is now in ROM.
          
 
          Programs
 
          This line puts character 38 at| >100 CALL VCHAR(1,1,38,99,9,1
           row 1 column 1 for 99 times, |  ,87)
           then puts character code 87  |
           at row 9 column 1            |
                                        |
          Fills screen with characters. | >100 CALL VCHAR(1,1,32,768,1,
                                        |  1,65,768,1,1,97,768,1,1,30,
                                        |  768) :: GOTO 100
                                        |

          Options
          CALL VCHAR is now written in Assembly so much faster is
          faster than normal XB, also as separate line numbers are
          needed to continue placing characters on screen.
          See HCHAR, HPUT, VPUT, HGET and VGET.



          VDPSTACK       subprogram                            PAGE  V3
          -------------------------------------------------------------

          Format         CALL VDPSTACK(numeric-variable)  

          Description

          The VDPSTACK subprogram allows change of location of the VDP
          STACK in VDP RAM. Care must be taken to where you place the
          stack after all any over write or change can crash XB.
          Normal VDP stack location is 2392 in decimal >0958 in Hex.
          Some XB programs like The Missing Link use 6176 or >1820 Hex.
          Another location would be like 4096 which is >1000 in Hex.
           Combine PRAM with VDPSTACK and Assemlby can be loaded into
          any memory locations previously very hard to use. That 
          required special loaders so now RXB has PLOAD and PSAVE to 
          get around these problems of loading anywhere in 32K now.

          Programs
 
          This line clears screen.      | >100 CALL CLEAR
          Set VDP STACK location.       | >110 CALL VDPSTACK(6176) 
          Display it.                   | >120 PRINT ">1820 STACK LOCAT 
                                        | ION"
          Show results.                 | >130 CALL SIZE
          Wait for key pressed.         | >140 CALL KEY("",0,S,S)
          Set VDP STACK location.       | >150 CALL VDPSTACK(4096)
          Display it.                   | >160 PRINT ">1000 STACK LOCAT
                                        | ION"
          Display it.                   | >170 CALL SIZE 
                                        |

          Options
          See PRAM for similar change to RAM locations. Also see 
          PLOAD and PSAVE for loading anywhere in 32K RAM.



          VERSION        subprogram                            PAGE  V4
          -------------------------------------------------------------
 
          Format         CALL VERSION(numeric-variable)
 
          Description
 
          See EXTENDED BASIC MANUAL PAGE 190 for more data. 
          Also see Programs below.
 
          This line will ask for version| >CALL VERSION(X)
          and return current to numeric-|
          variable X.                   |
                                        |
          Line 100 asks for version num.| >100 CALL VERSION(V)
          Line 110 checks for version   | >110 IF V<2016 THEN INPUT "DSK
          to be larger than 2001 and if |  NAME":D$ :: INPUT "FILENAME"
          it is will ask for input to   |  :F$ :: CALL XB("DSK."&D$&F$)
          use a old routine CALL XB. |                
                                        |

          Options
          Will always return current version of RXB. As you can see RXB
          actually makes VERSION a valuable routine again.



          VGET           subprogram                            PAGE  V5
          -------------------------------------------------------------
 
          Format         CALL VGET(row,column,length,string-variable
                         [,...])
 
          Description
 
          The VGET subprogram returns into a string-variable from the
          screen at row and column. Length determines how many
          characters to put into the string-variable. Row numbers
          from 1 to 24 and column numbers from 1 to 32. Length may
          number from 1 to 255. If VGET comes to the bottom of the 
          screen then it wraps to the top of screen.
 
          Programs
 
          The program to the right will | >100 CALL VGET(5,9,11,E$)
          get into string-variable E$   |
          the 11 characters at row 5 and|
          column 9.                     |
                                        |
          The program to the right will | >100 CALL VGET(1,3,5,M$,9,3,1
          get into string-variable M$   |  ,Q$,24,1,32,N$)
          the 5 characters at row 1 and |
          column 3, then put into       |
          string-variable Q$ the 1      |
          character at row 9 and column |
          3, then put into              |
          string-variable N$ the 32     |
          characters at row 24 and      |
          column 1.                     |
                                        |

          Options:
          See HPUT, VPUT, and HGET.



          VPUT           subprogram                            PAGE  V6
          -------------------------------------------------------------
 
          Format         CALL VPUT(row,column,string[,...])
 
                         CALL VPUT(row,column,string-variable[,...])
 
          Description
 
          The VPUT subprogram puts a string or string-variable or 
          number or number variable or constant onto the screen at
          row and column. The row numbers from 1 to 24 and
          column numbers from 1 to 32. If the string or number or 
          numeric variable or string-variable or constant being 
          put onto screen goes to an bottom it wraps to the top
          screen just like VCHAR does. VPUT runs from ROM.
 
          Programs
 
          Line 100 puts string "THIS" on| >100 CALL VPUT(10,4,"THIS")
          the screen at row 10 and      |
          column 4.                     |
                                        |
          Line 110 sets string-variable | >110 A$="VPUT"
          A$ equal to string "VPUT"     |
                                        |
          Line 120 puts string "is" at  | >120 CALL VPUT(11,5,"is",10,6
          row 11 and column 5, then puts|  ,A$)
          string-variable A$ at row 10  |
          and column 6.                 |
          Puts 456 at row 10 col 15     | >100 CALL VPUT(10,15,456)             
                                        |

          Options:
          CALL VPUT is now written in Assembly so much faster is
          faster than normal then XB DISPLAY AT(row,column) 
          (But a vertical version.)
          See HCHAR, VCHAR, HPUT, HGET and VGET.



          XB             Device Service Routine (DSR)          PAGE  X1
          -------------------------------------------------------------
 
          Format         RUN "XB"
 
                         DELETE "XB"
 
                         CALL CAT("XB")
 
                         OLD XB
 
                         SAVE XB         -(Must have a program within
                                         -memory to work at all)
 
                         CALL XB
 
          Description
 
          The XB DSR (Device Service Routine) allows access to the
          RXB title screen. The access will work only if the DSR is
          in the GPLDSR or LINK DSR. In other words, a DSR that
          acknowledges any type of DSR in RAM, ROM, GROM, GRAM,
          or VDP. Most DSR's only accept DSK or PIO. Others like the
          SAVE or LIST commands will only work with a program in the
          memory first. Still others like CALL LOAD("XB") must have the
          CALL INIT command used first.
           From EA option 5 you may type XB then enter, or from EA
          option 3 type XB then enter, then enter again. If the EA
          option 1 (edit), then 4 (print) type XB. From TI BASIC
          use OLD XB or DELETE "XB".
           Keep in mind that if it does not work, the problem is the
          DSR your using. Almost all DSR's today only acknowledge the
          ROM or RAM DSR's. As the XB DSR is in GROM/GRAM it seems a
          bit short sighted on the part of most programmers to use
          cut down versions of a DSR. Please discourage this as it is
          a disservice to us all.



          XB             subprogram                            PAGE  X2
          -------------------------------------------------------------
 
          Format         CALL XB("access-name")
 
                         CALL XB(string-variable)
 
                         CALL XB("access-name",file-number)
 
                         CALL XB(string-variable,numeric-variable)
 
          Description
 
          The XB subprogram is like RUN in XB. (XB manual page 161)
          The RUN subprogram can't run strings so special XB loader
          programs were written and required. Using RUN A$ results in
          a error report of * syntax error * in normal XB.
          XB uses quotes like RUN or strings unlike RUN. So X
          will run XB or BASIC programs from quoted or variables.
          The file-number or numeric-variable denote the number of
          files to be open before the XB program is loaded and run.
          XB first sets the number of files open, uses a NEW and
          then runs the access string. See FILES for more info.
           If a CALL XB can't find the program or disk it will close
          all files, clear all XB memory (Assembly lower 8K unaffected)
          and leave you in XB command mode. You will know this by the
          * Ready * and the cursor flashing below. This allows you to
          try again with either RUN or CALL XB again.
           If an empty string is used XB defaults to restart the
          RXB title screen. See XB for more info.

          Options
          See FILES for more information on RXB new CALL FILES.



          XB             subprogram                            PAGE  X3
          -------------------------------------------------------------

          Programs
 
          The program at the right will | >100 CALL XB("DSK2.HOT")
          load a XB Program named HOT   |
          from disk drive 2 then run it.|
                                        |
          This line loads string GZ$.   | >100 GZ$="DSK.XBGAMES.FROG"
          This line uses the string path| >110 CALL XB(GZ$)
          name to search all drives and |
          RAMDISKS for a disk named     |
          XBGAMES and load a program    |
          named FROG then run that      |
          program.                      |
                                        |
          Line 100 should be added to   | >100 CALL QUITON
          most RXB program to allow the | >110 CALL XB("DSKR.LOAD")
          QUIT key to work for aborting |
          XB loader.                    |
                                        |
          CALL FILES(1) and run DSK1.TML| >100 CALL XB("DSK1.TML",1)
                                        |
          The program at the right will | >100 CALL EA("XB")
          turn on the AUTO SELECTOR and |
          wait 4 second before switching|
          to the AUTO LOAD.             |
                                        |
          This line asks for a string.  | >100 INPUT A$
          This line uses the string and | >110 DELETE A$
          if you type XB then enter will|
          switch to the RXB.            |
                                        |
          This line shows the CALL XB   | >CALL XB
                                        |
 
          Options
          CALL BASIC and CALL EA are also available. 
          Also see XB, EA, BASIC DSR versions access too.



                                                               PAGE   1

        This is a copy of the RXB title screen:
 
 
 
                             
                        
 
 
                               *******************
                               * VERSION =  2022 *
                               *******************
                               *      R X B      *
                               *                 *
                               *     creator     *
                               *                 *
                               * Rich Gilbertson *
                               *******************
 
                        >> press ============= result <<
 
                            ANY KEY = DSK#.LOAD
 
                            ENTER   = DSK#.UTIL1
 
                          (COMMA) , = DSK#.BATCH
 
                          SPACE BAR = RXB COMMAND MODE
 
                          (PERIOD) . = EDITOR ASSEMBLER

           NOTE: 0 (ZERO) defaults to WDS1.LOAD or after pressing

                 ENTER defaults to WDS1.UTIL1 



                                                               PAGE   2             
                                                                           
       This is a explanation of the keys of the MENU screen:
       ----------------------------------------------------------------
       (any key) = DSK#.LOAD
          
        While the screen shows menu RXB is selected pressing 
       any key will be the drive that DSK#.LOAD will be run from.     
       RAMDISK number keys 1 to 9 or the alpha keys A to z.
        Pressing 0 (zero) key will run WDS1.LOAD
         
       ----------------------------------------------------------------
       (ENTER key) = DSK#.UTIL1
          
        While the screen shows menu RXB is selected pressing
       ENTER key allows Assembly Programs to be used. Pressing 
       any key will be the drive that DSK#.UTIL1 will be run from.     
       RAMDISK number keys 1 to 9 or the alpha keys A to z.
        Pressing 0 (zero) key will run WDS1.UTIL1
                   
       --------------------------------------------------------------- 
       (COMMA) , = DSK#.BATCH
          
         While the screen shows menu RXB is selected pressing
       COMMA key runs DSK#.BATCH 
       DSK#.BATCH defaults to DSK1 if BATCH not found will default to 
       command mode. For more information on this feature read USER in 
       the RXB information on BATCH FILE SYSTEM below.

       ----------------------------------------------------------------
       (SPACE BAR) = RXB COMMAND MODE
          
        Pressing the SPACE BAR results in XB command mode.
        (Same as waiting a few seconds just like normal XB does.)

       ----------------------------------------------------------------- 
       (PERIOD) . = EDITOR ASSEMBLER
          
        Pressing the . (PERIOD) key will switch to EDITOR ASSEMBLER
       menu. Pressing the . 

       -----------------------------------------------------------------
       (ZERO) 0 = WSD1.LOAD

         Pressing the 0 (ZERO) key will start a WSD1.LOAD to execute
        from hard drive 1. If the root directory has a LOAD program.



                                                               PAGE    3

       BATCH FILE SYSTEM:
       -----------------------------------------------------------------
       CALL USER overrides the normal edit mode by allowing a DV80 file
       to take control. This allows conversions from DV80 to XB program
       or DV80 to XB MERGE format or loading files, re-sequencing them,
       and saving or merging or adding lines through another DV80 file.
       All variables used through CALL USER are not affected so from a
       running program more lines or variables can be added to the size
       of the program without losing anything. Of course the RUN command
       will as always clear all variables before the program is run,
       this feature can be turned off with a CALL LOAD. (PRESCAN OFF)
        As the USER subprogram can override the Editor many features can
       be bypassed. Example:
                            NEW                       cr
                            OLD DSK1.XBPROGRAM        cr
                            RES 11,3                  cr
                            MERGE "DSK1.MERGEPGM"     cr
                            SIZE                      cr
                            SAVE "DSK1.NEWPROGRAM"    cr
                            RUN                       cr
                            NEW                       cr  
                            OLD DSK1.LOAD             cr  
 
        The above is a good example of a DV80 Batch file for RXB. Note
       that there must be a CHR$(13) or Carriage Return after every input
       line. If not then RXB assumes the it is the same line. But even
       that is not much of a problem as RXB allows 21 lines of input per
       program line. You can make them even longer if you want in USER.



                                                              PAGE    4

       INPUT/OUTPUT ACCESS:
       ----------------------------------------------------------------
       CALL IO controls the 9901 CRU chip. Sound lists can be played
       independently of current status. (i.e. type in a program while
       playing music from VDP/GROM.) Control Register Unit can turn
       on/off single bits of CRU address bus. (i.e. cards/chips)
       Cassette direct bus control. (i.e. no menu input/output, verify)
                                     
       REDO KEY RESTORED (Was removed in RXB2001 to RXB2012):                       
                     
       ----------------------------------------------------------------
        The REDO (FCTN 8) is RESTORED in RXB2015. USER needed a buffer
       that would not be molested or modified by CALL LINK, CALL LOAD
       or routines that need a buffer and usually use the same area
       that USER previously used. So to update and eliminate questions
       of compatibility the USER buffer was installed in place of the
       Edit recall buffer (REDO). The REDO key was not considered to be
       of much use anyway as the Crunch Buffer is 163 tokens long and
       in non-tokenized form the Edit recall buffer is only 152 bytes
       long. That is why when REDO is pressed only part of the line
       last typed in was recalled to screen. Additionally COPY lines,
       and MOVE lines commands can do the same thing as REDO could, so
       not much of anything is lost because it is assumed a TEXT EDITOR
       will be used to create programs in RXB then use CALL USER.
 
       PROGRAM DEVICE NAMES ACCESS:
       ----------------------------------------------------------------
       New access names established as devices are now available. By
       using any TRUE DSR (Device Service Routine) you may now access
       the Editor Assembler main menu by typing 'EA' within Basic or
       RXB. Example:  RUN "EA" or OLD EA or DELETE "EA"
       You may also access RXB from Editor Assembler or Basic or even
       another cartridge. Example: OLD XB or DELETE "XB" from Basic.
       At any Editor Assembler device prompt type 'XB' then enter.
 
       FOR ASSEMBLY LANGUAGE PROGRAMMERS:
       -----------------------------------------------------------------
       CALL MOVES is a new command that is a GPL command converted and
       added to RXB to give total control over every type of memory with
       in the TI-99/4A. MOVES works with address or strings to copy,
       over-write or move blocks of memory of any type of memory. RAM,
       VDP, GROM, GRAM, and ROM can be accessed by CALL MOVES.



                                                              PAGE    5

       RXB TO ASSEMBLY DIRECT ACCESS BY ADDRESS:
       ----------------------------------------------------------------
        EXECUTE is much faster than the traditional LINK routine built
       into XB. The main problem with LINK is it checks everything and
       pushes everything onto the VDP stack. After getting to Assembly
       it pops everything off the stack for use or pushes what is to
       be passed to XB onto the stack. EXECUTE on the other hand just
       passes a address to a 12 byte Assembly program in Fast RAM and
       RTWP ends the users program. A LINK will use up 6 bytes for the
       name, 2 bytes for the address and wastes time checking things.
        The advantage to EXECUTE is you use LOAD or MOVE or MOVES to
       place the values needed directly into the registers then do it.
       EXECUTE uses less space, is faster, and is easy to debug. 

       SAMS SUPPORT ROUTINES:
       ----------------------------------------------------------------
        The SAMS has support routines built into RXB. CALL SAMS("MAP")
       will turn the SAMS mapper on. CALL AMS("PASS") turns SAMS mapper
       to pass mode. CALL SAMS("ON") will turn on the read/write
       lines of the mapper. CALL SAMS("OFF") turns off the read/write
       lines. With these commands pages of memory can be written with
       a CALL LOAD or read with a CALL PEEK. 
        RXB AMS SUPPORT USES NO ASSEMBLY OR CALL LINKs. That means up 
       to 1 meg of 4K pages in entire 32K from RXB. That is impossible 
       to do from XB as you have to load your normal support somewhere 
       in 32K of assembly for everyone else not using RXB.
        GPL is where all the support routines are stored in RXB so not
       one byte is wasted on assembly support. That also means not one
       byte of SAMS memory in wasted on control routines.
        Speaking of control CALL SAMS switches 4K pages in the 32K SAMS.
       CALL SAMS uses boundry symbols upper case only.   
       i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
       D = >D000, E = >E000 and F = >F000 

       RND FUNCTION REPLACED
       -----------------------------------------------------------------
       Extended Basic RND has been replaced with the TI BASIC RND as the
       normal XB version of RND was hindered by to much Floating Point
       that is very slow for use just to get a random number. Also the
       XB RND was insanely complicated and bloated.



                                                                PAGE 6

       INTERRUPT SERVICE ROUTINE CONTROL (ISROFF and ISRON)
       ----------------------------------------------------------------
       ISR (Interrupt Service Routine) like MOUSE or Screen dumps or any
       special program like XB Packer use a ISR. The problem with these
       programs is unless they are written to work with new devices, a
       lock-up occurs. EXAMPLE: running a mouse routine and XB Packer.
       They were never made to work together. RXB now has a handle on
       this. CALL ISROFF turns off the interrupt and saves the address
       for turning it back on. CALL ISRON restarts the interrupt. As
       several pages of the AMS can be used with interrupts a whole
       new world of programming is now possible.
       NO ASSEMBLY IS USED OR CALL LINKs. Absolute compatibility.
 
       4K PROGRAM IMAGE FILE LOADER AND SAVER (PLOAD and PSAVE)
       ----------------------------------------------------------------
       Hidden loaders were created to overcome the slow loading speed
       of CALL LOAD. The disadvantage of a hidden loader is it can only
       load one assembly support program at a time. PLOAD loads program
       image files of 4K, and PLOAD can load as many times as needed
       within one RXB program. PSAVE is the opposite and creates the 
       program image files of the 4K anywhere in memory. Lastly loading
       200K into the SAMS card is easy with PLOAD. A simple loop can 
       load each SAMS 4K page with PLOAD. Each address boundry is in
       PSAVE or PLOAD like SAMS uses boundry symbols upper case only.
       i.e. 2 = >2000, 3 = >3000, A = >A000, B = >B000, C = >C000,
       D = >D000, E = >E000 and F = >F000 
      
       SAVE FILES IN INTERNAL VARIABLE 254 OR PROGRAM IMAGE FORMAT
       ----------------------------------------------------------------
       RXB allows XB programs to load or be saved in two formats as
       previously, but now RXB allows more control of this feature.
       Normally XB will save files in Program Image format if these
       programs are small enough to fit in VDP memory. If these XB
       programs are larger then what will fit in VDP then XB programs
       will be saved in Internal Variable 254 format. RXB has a added
       feature added to save command. IV254 is the new feature. 
       EXAMPLE: SAVE DSK3.TEST,IV254



                                                                PAGE  7

       JOYSTICK and SPRITE MOTION CONTROL with KEY built FIRE button
       ----------------------------------------------------------------
       As normal XB JOYSTICK and SPRITE controls were seperate commands
       this slowed down response in XB games and utilities. The main 
       issue was these commands were not combined. RXB added two new
       commands to the arsenal but also added CALL KEY and also added
       a IF THEN into the mix. Thus CALL JOYMOTION acts just like
       CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number
       To bring even more to the table is an INDEX value for SPRITES.
       EXAMPLE:
       CALL JOYMOTION(key-unit,x-return,y-return,#sprite,
       row-index,column-index,key-return-variable) GOTO line-number

       key-unit,x-return,y-return are like normal XB JOYST
       #sprite,row-index,column-index are like XB MOTION but dot based
       key-return-variable is just like XB KEY key varible
       GOTO line-number is like XB IF KEY THEN line-number

       The GOTO is not required nor is the key-return-variable as these 
       are optional depending on your needs.

       JOYSTICK and SPRITE LOCATE CONTROL with KEY built in FIRE button
       ----------------------------------------------------------------
       As normal XB JOYSTICK and SPRITE controls were seperate commands
       this slowed down response in XB games and utilities. The main 
       issue was these commands were not combined. RXB added two new
       commands to the arsenal but also added CALL KEY and also added
       a IF THEN into the mix. Thus CALL JOYLOCATE acts just like
       CALL JOYST + CALL KEY + CALL MOTION + IF FIRE THEN line number 
       EXAMPLE:
       CALL JOYLOCATE(key-unit,x-return,y-return,row-index,column-index,
       #sprite,dot-row,dot-column),key-return-variable) GOTO line-number

       key-unit,x-return,y-return are like normal XB JOYST
       #sprite,row-index,column-index are like XB LOCATE but dot based
       key-return-variable is just like XB KEY key varible
       GOTO line-number is like XB IF KEY THEN line-number

       The GOTO is not required nor is the key-return-variable as these 
       are optional depending on your needs.



                                                                PAGE  8

       RAM MEMORY MANAGER (CALL PRAM)
       ----------------------------------------------------------------
       New way to use RXB way ahead of any other XB made is PRAM that 
       allows you to change the size of RAM in upper 24K of RAM. 
       Normally >A040 is the end of RAM in XB as it starts going from 
       high RAM >FFFC down to lowest toward >A040 this allows 64 bytes
       not used but was for the TI Debugger to use.
       The PRAM command changes the location of the end of XB RAM.
       Normally XB RAM is >A040 in hex so the PRAM command allows 
       changing this location to as low as 298 bytes of XB RAM.
       Any location from >A000 to >FEBE is a valid change in PRAM.
       Thus -322 decimal or >FEBE hex is highest address is -25576
       decimal or >A000 hex lowest address. That tops our XB RAM to 
       64 more bytes then normal at max or down to 298 bytes of RAM.
       How come no one else thought of this? (Need to fix program start)

       VDP STACK MEMORY MANAGER (CALL VDPSTACK)
       ----------------------------------------------------------------
       Normal VDP stack location is 2392 in decimal >0958 in Hex.
       Some XB programs like The Missing Link use 6176 or >1820 Hex.
       Another location would be like 4096 which is >1000 in Hex.
       The VDPSTACK subprogram allows change of location of the VDP 
       STACK in VDP RAM. Care must be taken to where you place the
       stack after all any over write or change can crash XB.
       Changing the VDP stack location allows changes in type of VDP
       mode being used like TEXT mode or Multi colored mode.

       FILES BUFFEER MEMORY MANAGER (CALL FILES)
       ----------------------------------------------------------------
       The FILES subprogram differs from the Disk Controller FILES on
       the CorComp, TI, Myarc or Parcom versions. All of these require
       a NEW after CALL FILES. NEW is executed after the FILES 
       subprogram in RXB, no need to use NEW it is built into FILES.
       Also RXB FILES accepts values from 0 to 15 unlike the other 
       FILES routines that can only accept 1 to 9. Each open file
       reduces VDP by 534 bytes, plus each file opened will use 518 
       bytes more. CALL FILES(0) will display 5624 Bytes of Stack free
       and 24488 Bytes of Program space free. At this point up to 15 
       files may be open at the same time. Not recommended but possible.
       Thus RXB  0 files now is possible in RXB or up to 15.



                                                                PAGE  9

       SIZE REPORT CHANGE
       ----------------------------------------------------------------
       RXB has a major change to SIZE routine not just adding CALL SIZE
       but the report itself is extensivily more useful.
       >SIZE press enter
       Screen advances and you see:

         >SIZE
         11840 Bytes of Stack Free
         24488 Bytes of Program Free
         8192 Bytes of Assembly Free
         256  Pages 1024 K SAMS
         2    Page = Address >2000
         3    Page = Address >3000
         10   Page = Address >A000
         11   Page = Address >B000
         12   Page = Address >C000
         13   Page = Address >D000
         14   Page = Address >E000
         15   Page = Address >F000
         >37D7 VDP Free Address 
         >0958 VDP STACK Address
         >FFE7 Program Free Address
         >A040 Program End Address  
         >2000 RAM Free Address
         >4000 RAM End Address

         >cursor flashing

       As you can see much more information then you are used to
       seeing about memory of XB and system. Note first off the 
       display of Assembly Free memory and if you have a SAMS.
       If you have a SAMS you also see the pages used and at the
       address in Hex where it resides. Next is address of first
       free VDP Address and below that you VDP Stack location. 
       For XB itself you also see the XB program first free 
       address and the End Address for XB program space. Lastly 
       the first free RAM in Assembly lower 8k and last address
       used by Assembly.



                                                                PAGE 10

       RXB FIXES TO XB REQUESTED BY USERS
       ----------------------------------------------------------------
        RXB has numerous fixes thru the years a few will be mentioned
       here as far back as 1983 when I bought my TI99/4A.
        Recently asked to fix RANDOMIZE SEED not working with the 
       CALL LINK in XB, so I added a line to reset RANDOM SEED upon
       use of the CALL LINK. Your welcome.
        RXB and XB had a issue with PRINT that worked fine in BASIC 
       and a fix was made to solve this very rare issue. You might 
       have seen it when edge characters were improperly shown.
        CALL FILES(0) never worked in BASIC or XB but does work in
       RXB now. This meant a update to SIZE routine too.
        Another XB bug was this example:
       10 PRINT 
       LIST
       ACCEPT A
        Now a error is produced unlike version 110 XB crashes. 
       RXB shows this instead * Only legal in a program *

       THANKS TO LEE STEWART 
       ----------------------------------------------------------------
       RXB 2021 has muliple routines now in Assembly to speed up these
       routines CLEAR, CHARSET, HCHAR, VCHAR, HPUT, and VPUT. Expect
       next version of RXB to have even more Assembly for former GPL
       routines thanks to help from Lee Stewart. Specifically CLEAR, 
       HPUT, VPUT, HCHAR, VCHAR, SCROLL, ROLL and CLEARPRINT are all
       speedy due to be Assembly now instead of GPL.
       



          CALL           subprogram list of format modified    PAGE  11
          -------------------------------------------------------------

          CALL CHAR(ALL,pattern-identifier[,...])

          CALL CHARSET(ALL)

          CALL COINC(#sprite,#sprite,tolerance,numeric-variable[,...])

          CALL COLOR(ALL,foreground-color,background-color[,...])
 
          CALL DISTANCE(#sprite,#sprite,numeric-variable[,...])
 
          CALL FILES(number) {0 to 15 can be used now}
 
          CALL GCHAR(row,column,numeric-variable[,...])

          CALL HCHAR(row,column,character-code,repetition[,...])
 
          CALL JOYST(key-unit,x-return,y-return[,...])
 
          CALL KEY(key-unit,return-variable,status-variable[,...])

          CALL KEY(string,key-unit,return-variable,status-variable[,...])

          CALL MAGNIFY(magnification-factor[,...])
 
          CALL MOTION(ALL,row-velocity,column-velocity[,...])
          CALL MOTION(GO[,...])
          CALL MOTION(STOP[,...])

          CALL SCREEN(color-code[,...])
 
          CALL VCHAR(row,column,character-code,repetition[,...])
 











                                                                                PAGE REA1

                          *************************************************************** 
                          *              RXB Editor Assembler Version 2015              * 
                          ***************************************************************
 
                           REA is a new completely re-written Editor Assembler module. 
                         Any code not needed was removed, and this left room for many 
                         new features. TI BASIC support has been removed to add in the 
                         features like catalog a drive and set pathnames.

                         This is a copy of the REA title screen:

                                       Rich Editor & Assembler V=2015 
                                       --------------------------------

                                            S   SET PATHS NAMES 

                                            D   DIRECTORY

                                            A   ASSEMBLER 

                                            E   EDITOR 

                                            X   XB PROGRAM 

                                            L   LOAD and RUN 

                                            P   PROGRAM FILE 

                                            .   R X B



                                                                              PAGE REA2

                      This is a copy of the REA Configure Paths:

                                         * CONFIGURE PATHS *
   
                                    1  DSK1.EDIT1

                                    2  DSK1.ASSM1

                                    3  DSK1.SOURCE

                                    4  DSK1.OBJECT

                                    5  DSK1.LIST

                                    6  OPTIONS: L
                                    
                                                                   
                                       CTRL 1 - 5 DRIVE SELECTION

                                       ANY OTHER KEY TO MAIN MENU

                                     



                                                                              PAGE REA3

                      S SET PATH NAMES
                      Sets path of Editor, Assembler,source, object, and list files.
                      Selection of 1 to 6 allows a input like as in previous Editor
                      Assembler version including REA. Selection of CTRL 1 to 5 will
                      allow single selection of drive number for that path. As an
                      example is select CTRL 1 and the number 1 in path DSK1.EDIT1 
                      will beep and ask for a drive number or letter. Another beep
                      indicates selection made and shows the change.
                                
                      E EDITOR
                      Has a arrow to indicate which option has been selected, thus
                      the user will no longer make a mistake of saving a blank file
                      over the original that he actually meant to load or save. Also
                      as Edit path is preset the loading is automatic for the Editor
                      and the file to load. Save file still asks for a path name and
                      file. Print also asks for device or path name. 
                      i.e. DSK.VOLUMENAME.EDIT1 or WDS1.DIRECTORY.SUBDIRECTORY.EDIT1
                       The directory will load the selected file if this option is
                      used. See Directory for features.
                    
                      A ASSEMBLER
                      Assembler has no menu selection as CONFIGURE PATHS does this.
                      The ASSM1 path from S SET PATH automatically loads Source,
                      Object, List file paths and Options. A Assember key press from
                      main menu starts the Assembler, but SET PATH must be first.
                      i.e. DSK.VOLUMENAME.ASSM1 or WDS1.DIRECTORY.SUBDIRECTORY.ASSM1
                       The directory will replace the selected file if this option
                      is used. See Directory for features.

                      L LOAD and RUN
                      The directory will load the selected file if this option is
                      used. After loading a file all the link names will be displayed
                      inclucding all support routines. Using arrow keys the selected
                      link name can be executed by pressing ENTER key. Up to 80 link
                      names will be displayed on screen thus arrow keys to select a
                      program name to run. See Directory for features.

                      P PROGRAM FILE
                      By pressing a single key then enter, DSK#.UTIL1 is displayed
                      and executed. # indicates the key pressed A to Z or 1 to 9.
                      Pressing 0 (zero) runs WDS1.UTIL1 at PROGRAM FILE. The directory
                      will load the selected file if this option is used. The lower 8K
                      support routines normally only loaded by the EA3 option are now
                      loaded by this option too. So users can load FORTH, FORTRAM, and
                      C programs from the EA5 prompt.

                      X XB PROGRAM
                      New feature that prompts for a XB program file to run. If the
                      file or device errors out, then a return to RXB command mode is
                      done. The * R X B * and a flashing cursor indicates the XB
                      command mode. By pressing a single key then enter, DSK#.LOAD is
                      displayed and executed. # indicates the key pressed. The
                      directory will load the selected file if this option is used.
                      See Directory for new features.

 



                                                                            PAGE REA4
                     
                      D DIRECTORY
                      A new feature that prompts for a device name. EXAMPLE: DSK1.
                      The period MUST be included if the full device name is used.
                      Or type in a path name EXAMPLE: WDS1.DIRECTORY. The quicker way
                      is to just type a number or letter then enter. Thus DSK#. is
                      used and the key pressed represents the # used. While the
                      catalog is being scrolled on screen, ANY KEY will pause the
                      display and reading of a disk, an arrow will appear next to the
                      file read and the ARROW KEYS will move the arrow up or down.
                      (FCNT/CTRL optional). To page forward or backward a screen at
                      a time press left and right arrow keys. The arrow last pointing
                      to will stay at the top or bottom of the screen display. This
                      in much better than other paging methods like DM1000 or Funnel
                      Web Disk review to see single lines.
 
                      ONLY the SPACE BAR will pause the catalog until pressed again.

                      2015 added new keys to Directory: 1 = Editor.
                                                   A or a = Assembler file.
                                                   G or g = GPL Assembler file.

                      Use ENTER to select the filename so it will be placed into into
                      a buffer, the cataloger will auto-load Dis/Fix 80 files into
                      the EA3 menu, Programs will be EA5, and only Dis/Var 254 is
                      considered to be XB programs. So to load XB programs use the
                      SPACE BAR to buffer the filename, thus loading is automatic
                      from there for XB programs. For DIS/VAR 80 or DIS/FIX 80 files
                      to be edited or assembled use ENTER or SPACE BAR, then select
                      the Edit or Assembler from the main menu. Loading is automatic
                      from there.

                      Directory will automatically assume you wish to catalog a
                      sub-directory if a Directory was selected. To buffer anything
                      else you must use the SPACE BAR, to select a filename to be
                      placed into a buffer, then auto return to REA main menu. Now
                      select the option to be used from this buffer.

                      If you select D DIRECTORY again, the buffer will be used and the
                      last device accessed will be used again. If you wish to clear
                      the buffer just use FCTN BACK to the REA main menu.

                      NOTE:
                      SOURCE file name must be filled in as this is the default. But
                      if you use DIRECTORY to flag a file it will be placed into
                      S SET PATH NAMES for all uses.

                      . R X B
                      A previous feature that was optional since version 1000 but had
                      no menu option on screen indicating it was a option. (Period) .
                      will return to RXB menu screen.



                                                                            PAGE REA5

                      SYSTEM SUPPORT

                      The modified version of the Editor/Assembler no longer supports
                      the 99/4 computer. A 99/4A is required. All TI BASIC support
                      routines (CALL INIT, CALL LINK, CALL LOAD,CALL PEEK, CALL PEEKV,
                      CALL POKEV, and CALL CHARPAT) have been removed from the
                      Editor/Assembler. If you have a program that must be run from
                      TI BASIC and requires these routines, you must plug an
                      Editor/Assembler module into the cartridge connector.
                      There are some assembly language programs that access data
                      internal to the Editor/Assembler cartridge. These programs
                      will not run correctly due to the re-structuring of the data
                      in the Editor/Assembler module. For these programs you must
                      use your Editor/Assembler cartridge. On the other hand like
                      FunnelWeb REA loads the support routines before EA3 or EA5
                      loaders to engage, so C, FORTRAM, and FORTH will load from
                      the EA5 prompt.

                      NO 32K NEEDED TO WHAT?
                      REA has been totally re-written so the user can now use some
                      of the features of REA without that nasty *NO MEMORY EXPANSION*
                      error turning up. The error routine only disallows the user
                      from accessing those aspects of REA that absolutely needs 32K
                      to work. The user may now use the REA EDITOR PRINT FILE menu,
                      or use the x R X B file loader menu, or use D DIRECTORY menu.
                      That means with RXB and REA the user can now print files, view
                      files, load any BASIC or XB program and catalog from REA with
                      or without a 32K memory.

                      EASTER EGGS
                      When on main menu of REA 2015 using keys 1 will still go to
                      the Editor, 2 will still go to Assembler, 3 will still go to
                      the Load and Run, and 5 will still go to RUN PROGRAM FILE.
                      There are more to look for.


